Open Access
Issue
E3S Web Conf.
Volume 264, 2021
International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2021)
Article Number 05056
Number of page(s) 10
Section Engineering Materials Science, Intelligent Transport Systems and Transport Logistics
DOI https://doi.org/10.1051/e3sconf/202126405056
Published online 02 June 2021
  1. Dmitriev V.G., Egorova O.V., Zhavoronok S.I. et al., Investigation of Buckling Behavior for Thin-Walled Bearing Aircraft Structural Elements with Cutouts by Means of Numerical Simulation Russ. Aeronaut 61, pp 165–174. https://doi.org/10.3103/S1068799818020034. (2018). [Google Scholar]
  2. Abrosimov N.A., Numerical modeling of nonlinear deformation and buckling of composite plate-shell structures under pulsed loading Mech Compos Mater 35 pp 495–506. https://doi.org/10.1007/BF02259471. (1999) [Google Scholar]
  3. Dowell E.H., Edwards, J. and Strganac T.W., Nonlinear aeroelasticity J.Aircraft 40 (5) p. 857–874, DOI: 10.2514/2.6876, (2003) [Google Scholar]
  4. Dowell E.H., Edwards, J. and Strganac T.W., Nonlinear aeroelasticity J.Aircraft 40 (5) 857–874, DOI: 10.2514/2.6876. (2003) [Google Scholar]
  5. Vasconcellos R.M.G., Abdelkefi A., Marques F.D. and Hajj M.R., Representation and analysis of control surface free play nonlinearity, J. Fluids Struct. 31 p. 79–91, DOI: 10.1016/j.- jfluidstructs.2012.02.00391 (2012) [Google Scholar]
  6. de Thiago Sales P., Daniel Pereira A., Flávio Marques D. and Domingos Rade A. 2019 Modeling and dynamic characterization of nonlinear non-smooth aeroviscoelastic systems Mechanical Systems and Signal Processing 116 p. 900–915. https://doi.org/10.1016/j.ymssp.2018.07.003. (2019) [Google Scholar]
  7. Nobuyuki SHIMIZU and Wei ZHANG, Fractional Calculus Approach to Dynamic Problems of Viscoelastic Materials, JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing 42, (4) p. 825–837 https://doi.org/10.1299/jsmec.42.825, (1999). [Google Scholar]
  8. Mirsaidov M. Using linear hereditary theory of viscoelasticity by dynamic calculation of earth structures Bases, Foundations and Soil Mechanics 6 p. 30–34. (2012) [Google Scholar]
  9. Mirsaidov M. and Sultanov T., Use of linear hereditary theory of viscoelasticity for dynamic analysis of earth structures, Soil Mechanics & Foundation Engineering. 49 (6) p. 250–256. DOI: 10.1007/s11204-013-9198-8, (2013) [Google Scholar]
  10. Badalov F.B., Khudayarov B.A. and Abdukarimov, A., Effect of the hereditary kernel on the solution of linear and nonlinear dynamic problems of hereditary deformable systems, Journal of Machinery Manufacture and Reliability 36 p. 328–335. https://doi.org/10.3103/S1052618807040048. (2013) [Google Scholar]
  11. Badalov F.B. Methods for Solving Integral and Integro-differential Equations of the Hereditary Theory of Viscoelasticity (Tashkent: Mekhnat).(1987) [Google Scholar]
  12. Khudayarov B.A., and Turaev F.Zh. Mathematical Simulation of Nonlinear Oscillations of Viscoelastic Pipelines Conveying Fluid, Applied Mathematical Modelling 66 p. 662–679, https://doi.org/10.1016/j.apm.2018.10.008. (2019). [Google Scholar]
  13. Khudayarov B.A., Komilova Kh.M. and Turaev F.Zh. Dynamic analysis of the suspended composite pipelines conveying pulsating fluid Journal of Natural Gas Science and Engineering 75 pp 103–148. https://doi.org/10.1016/j.jngse.2020.103148. (2020). [Google Scholar]
  14. Khudayarov B.A. and Turaev F. Nonlinear vibrations of fluid transporting pipelines on a viscoelastic foundation Magazine of Civil Engineering 86 (2) p. 30–45. DOI: 10.18720/MCE.86.4. (2019) [Google Scholar]
  15. Khudayarov B.A., Komilova Kh.M. and Turaev F.Zh., The effect of two-parameter Pasternak foundations on the oscillations of composite pipelines conveying gas-containing fluids International Journal of Pressure Vessels and Piping 176 pp 103–946. https://doi.org/10.1016/j.ijpvp.2019.103946. (2019) [Google Scholar]
  16. Khudayarov B.A. and Turaev F.Zh. Nonlinear supersonic flutter for the viscoelastic orthotropic cylindrical shells in supersonic flow Aerospace Science and Technology 84 120–130. DOI: 10.1016/j.ast.2018.08.044. (2019). [Google Scholar]
  17. Khudayarov B.A. and Komilova Kh.M., Vibration and dynamic stability of composite pipelines conveying a two-phase fluid flows Engineering Failure Analysis 104 pp. 500–512. [Google Scholar]
  18. Khudayarov B.A., Komilova Kh.M. and Turaev F.Zh., Numerical Simulation of Vibration of Composite Pipelines Conveying Pulsating Fluid International Journal of Applied Mechanics 11 (9) 1950090. https://doi.org/10.1142/S175882511950090X. (2019) [CrossRef] [Google Scholar]
  19. Khudayarov B.A., Komilova Kh M., Turaev F.Zh. and Aliyarov J.A., Numerical simulation of vibration of composite pipelines conveying fluids with account for lumped masses, International Journal of Pressure Vessels and Piping 179 104–034. https://doi.org/10.1016/j.ijpvp.2019.104034. (2020) [Google Scholar]
  20. Khudayarov B.A., and Komilova Kh M., Numerical modeling of vibrations of viscoelastic pipelines conveying two-phase slug flow Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika 61 p. 95–110. DOI: 10.17223/19988621/61/9. (2019) [Google Scholar]
  21. Khudayarov B.A., and Turaev F.Zh. Numerical simulation of nonlinear oscillations of a viscoelastic pipeline with fluid, Vestn. Tom. Gos. un-ta. Matematika i mekhanika 5 (43) pp 90–98. DOI: 10.17223/19988621/43/10. (2016) [Google Scholar]
  22. Khudayarov B.A., Modeling of supersonic nonlinear flutter of plates on a visco-elastic foundation. Advances in aircraft and spacecraft science 6 (3) p. 257–272. https://doi.org/10.12989/aas.2019.6.3.257. (2019) [Google Scholar]
  23. Khudayarov B., Turaev, F. and Kucharov, O., Computer simulation of oscillatory processes of viscoelastic elements of thin-walled structures in a gas flow, E3S Web of Conferences 97 06008. https://doi.org/10.1051/e3sconf/20199706008, (2019) [Google Scholar]
  24. Khudayarov B.A., Ruzmetov K.Sh, Turaev F.Zh, Vaxobov V.V., Hidoyatova M.A., Mirzaev S.S. and Abdikarimov, R. Numerical modeling of nonlinear vibrations of viscoelastic shallow shells, Engineering Solid Mechanics 8 (3) p. 187–300. (2020). [Google Scholar]
  25. Filippov, I. G. and Kudainazarov, K., Refinement of equations describing longitudinal-radial vibrations of a circular cylindrical viscoelastic shell. Soviet Applied Mechanics, 26 (2), pp 161–168. DOI: 10.1007/bf00887110. (1990). [Google Scholar]
  26. Filippov, I. G. & Kudainazarov, K. General transverse vibrations equations for a circular cylindrical viscoelastic shell. Soviet Applied Mechanics, 26 (4), pp 351–357. DOI: 10.1007/bf00887127. (1990). [Google Scholar]
  27. Khudayarov B.A., Komilova K.M. and Turaev F.Z., Numerical study of the effect of viscoelastic properties of the material and bases on vibration fatigue of pipelines conveying pulsating fluid flow. Engineering Failure Analysis., 115, 104–635, (2020). [Google Scholar]
  28. Khudayarov B.A., Turayev F., Zhuvonov Q., Vahabov V., Kucharov O. and Kholturaev K.H., Oscillation modeling of viscoelastic elements of thin-walled structures. IOP Conference Series: Materials Science and Engineering. 883(1), 012188, (2020). [Google Scholar]
  29. Turaev F., Khudayarov B., Kucharov O., Rakhmatullaev A., Zhuvonov K. and Gulomov O. Dynamic stability of thin-walled structure elements considering hereditary and inhomogeneous properties of the material. IOP Conference Series: Materials Science and Engineering.. 883(1), 012187. (2020). [CrossRef] [Google Scholar]
  30. Khudayarov B., Turaev F., Vakhobov V., Gulamov O. and Shodiyev S., Dynamic stability and vibrations of thin-walled structures considering heredity properties of the material, IOP Conference Series: Materials Science and Engineering. 2020. 869(5), 052021. (2020). [CrossRef] [Google Scholar]
  31. Khudayarov B.A., Komilova Kh.M. and Turaev F.Zh., Dynamic analysis of the suspended composite pipelines conveying pulsating fluid, Journal of Natural Gas Science and Engineering 75 103–148. https://doi.org/10.1016/j.jngse.2020.103148 (2020) [Google Scholar]
  32. Khudayarov B.A., Komilova Kh.M., Turaev F.Zh. and Aliyarov, J. A Numerical simulation of vibration of composite pipelines conveying fluids with account for lumped masses, International Journal of Pressure Vessels and Piping 179 104034. https://doi.org/10.1016/j.ijpvp.2019.104034 (2020). [Google Scholar]
  33. Khudayarov B.A., Ruzmetov K.Sh., Turaev F.Zh., Vaxobov V.V., Hidoyatova M.A., Mirzaev S.S. and Abdikarimov, R. Numerical modeling of nonlinear vibrations of viscoelastic shallow shells Engineering Solid Mechanics 8 (3) p. 199–204.(2020) [Google Scholar]
  34. Khudayarov B.A., Komilova Kh.M. and Turaev F.Zh. Numerical Simulation of Vibration of Composite Pipelines Conveying Pulsating Fluid International Journal of Applied Mechanics 11 (9) 1950090. https://doi.org/10.1142/S175882511950090X. (2019). [Google Scholar]
  35. Khudayarov B., Turaev F. and Kucharov O., Computer simulation of oscillatory processes of viscoelastic elements of thin-walled structures in a gas flow, E3S Web of Conferences 97 06008. https://doi.org/10.1051/e3sconf/20199706008. (2019) [Google Scholar]
  36. Khudayarov B.A. and Turaev F.Zh. Nonlinear vibrations of fluid transporting pipelines on a viscoelastic foundation Magazine of Civil Engineering 86 (2).. pp. 30–45. DOI: 10.18720/MCE.86.4. (2019). [Google Scholar]
  37. Khudayarov B.A. and Turaev F.Zh. Nonlinear supersonic flutter for the viscoelastic orthotropic cylindrical shells in supersonic flow Aerospace Science and Technology 84 p. 120–130. DOI: 10.1016/j.ast.2018.08.044. (2019) [Google Scholar]
  38. Khudayarov B.A., Flutter of a viscoelastic plate in a supersonic gas flow. International Applied Mechanics. 46 (4), p. 455–460.( 2010). [Google Scholar]
  39. Khudayarov B.A. and Bandurin N.G., Numerical investigation of nonlinear vibrations of viscoelastic plates and cylindrical panels in a gas flow. Journal of Applied Mechanics and Technical Physics. 48 (2), pp. 279–284. (2007) [CrossRef] [Google Scholar]
  40. Khudayarov B.A., Flutter analysis of viscoelastic sandwich plate in supersonic flow. American Society of Mechanical Engineers, Applied Mechanics Division, AMD 256,. p. 11–17, (2005). [Google Scholar]
  41. Khudayarov B.A. Numerical analysis of the nonlinear flutter of viscoelastic plates. International Applied Mechanics. 41 (5), pp. 538–542. (2005) [CrossRef] [Google Scholar]
  42. Khudayarov B.A., Behavior of viscoelastic three-layered structures in a gas flow. Problems of machine building and reliability of machines.. (6), с. 87–90. (2004) [Google Scholar]
  43. Abdullayev, A.A., Ergashev, T.G. Poincare-tricomi problem for the equation of a mixed elliptico-hyperbolic type of second kind. Vestnik Tomskogo Gosudarstvennogo Universiteta, Matematika i Mekhanika, (65), pp 5–21, DOI: 10.17223/19988621/65/1. (2020) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.