Open Access
Issue
E3S Web Conf.
Volume 264, 2021
International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2021)
Article Number 05057
Number of page(s) 11
Section Engineering Materials Science, Intelligent Transport Systems and Transport Logistics
DOI https://doi.org/10.1051/e3sconf/202126405057
Published online 02 June 2021
  1. Panovko Y.G. Internal friction under vibrations of elastic systems (M.: Fizmatgiz). (1960) [Google Scholar]
  2. Sorokin E.S., To the theory of internal resistance under vibrations of elastic systems (M.: Gosstroyizdat) p.131. (1960). [Google Scholar]
  3. Arutyunyan N.K. and Kolmanovsky V.B., The creep theory of inhomogeneous hereditary aging media (M.: Nauka). (1983). [Google Scholar]
  4. Badalov F.B., Methods for Solving Integral and Integro-differential Equations of the Hereditary Theory of Viscoelasticity (Tashkent: Mekhnat). (1987). [Google Scholar]
  5. Pobedrya B.E., The mechanics of composite materials (M: Moscow State University Publishing House) p.336. (1984). [Google Scholar]
  6. Badalov F.B., Khudayarov B.A. and Abdukarimov, A., Effect of the hereditary kernel on the solution of linear and nonlinear dynamic problems of hereditary deformable systems, Journal of Machinery Manufacture and Reliability 36, p. 328–335, (2007) [CrossRef] [Google Scholar]
  7. Badalov F.B., Eshmatov, K. and Yusupov, M., Some Methods of Solution of the Systems of Integro-differential Equations in Problems of Viscoelasticity, Applied Mathematics and Mechanics 51 (5) p. 867–871 (1987) [Google Scholar]
  8. Khudayarov B.A., Komilova K.M. and Turaev F.Z. Numerical study of the effect of viscoelastic properties of the material and bases on vibration fatigue of pipelines conveying pulsating fluid flow. Engineering Failure Analysis, 115, 104635. (2020). [Google Scholar]
  9. Khudayarov B.A., Turayev, F., Zhuvonov, Q., Vahabov, V., Kucharov, O. and Kholturaev, K., Oscillation modeling of viscoelastic elements of thin-walled structures. IOP Conference Series: Materials Science and Engineering. 883 (1), 012188, (2020). [Google Scholar]
  10. Turaev, F., Khudayarov, B., Kucharov, O., Rakhmatullaev, A., Zhuvonov, K. and Gulomov, O., Dynamic stability of thin-walled structure elements considering hereditary and inhomogeneous properties of the material. IOP Conference Series: Materials Science and Engineering. 883 (1), 012187. (2020). [Google Scholar]
  11. Khudayarov, B., Turaev, F., Vakhobov, V., Gulamov, O. and Shodiyev, S. Dynamic stability and vibrations of thin-walled structures considering heredity properties of the material. IOP Conference Series: Materials Science and Engineering. 869 (5),052021. (2020) [Google Scholar]
  12. Khudayarov B.A., Komilova K.M. and Turaev F.Z. 2020 Dynamic analysis of the suspended composite pipelines conveying pulsating fluid, Journal of Natural Gas Science and Engineering 75 103148. https://doi.org/10.1016/j.jngse.2020.103148. (2020) [Google Scholar]
  13. Khudayarov B.A., Komilova K.M., Turaev F.Z. and Aliyarov J.A., Numerical simulation of vibration of composite pipelines conveying fluids with account for lumped masses, International Journal of Pressure Vessels and Piping 179 104034. https://doi.org/10.1016/j.ijpvp.2019.104034. (2020) [Google Scholar]
  14. Khudayarov B.A., Ruzmetov K.S., Turaev F.Z., Vaxobov V.V., Hidoyatova M.A., Mirzaev S.S. and Abdikarimov, R., Numerical modeling of nonlinear vibrations of viscoelastic shallow shells Engineering Solid Mechanics 202 8 (3) p. 199–204. (2020) [Google Scholar]
  15. Khudayarov B.A., Komilova K.M. and Turaev F.Z., Numerical Simulation of Vibration of Composite Pipelines Conveying Pulsating Fluid, International Journal of Applied Mechanics 2019 11 (9) 1950090. https://doi.org/10.1142/S175882511950090X. (2019) [Google Scholar]
  16. Khudayarov B.A. and Komilova K.M., Vibration and dynamic stability of composite pipelines conveying a two-phase fluid flows, Engineering Failure Analysis 2019 104 500–512. https://doi.org/10.1016/j.engfailanal.2019.06.025. (2019) [Google Scholar]
  17. Khudayarov B.A., Komilova K.M. and Turaev F.Z. The effect of two-parameter Pasternak foundations on the oscillations of composite pipelines conveying gas-containing fluids, International Journal of Pressure Vessels and Piping 176 103946. https://doi.org/10.1016/j.ijpvp.2019.103946 (2020) [Google Scholar]
  18. Khudayarov B.A. and Komilova K.M., Numerical modeling of vibrations of viscoelastic pipelines conveying two-phase slug flow, Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika 2019 61 p. 95–110. DOI: https://doi.org/10.17223/19988621/61/9. (2019). [Google Scholar]
  19. Khudayarov, B., Turaev, F. and Kucharov, O., Computer simulation of oscillatory processes of viscoelastic elements of thin-walled structures in a gas flow, E3S Web of Conferences 2019 97 06008. https://doi.org/10.1051/e3sconf/20199706008. (2019). [EDP Sciences] [Google Scholar]
  20. Khudayarov B.A., Modeling of supersonic nonlinear flutter of plates on a visco-elastic foundation. Advances in aircraft and spacecraft science 6 (3) p. 257–272. https://doi.org/10.12989/aas.2019.6.3.257. (2019). [Google Scholar]
  21. Khudayarov B.A. and Turaev F.Z., Mathematical Simulation of Nonlinear Oscillations of Viscoelastic Pipelines Conveying Fluid, Applied Mathematical Modelling 66 p. 662–679. https://doi.org/10.1016/j.apm.2018.10.008, (2019) [Google Scholar]
  22. Khudayarov B.A. and Komilova K.M., Numerical simulation of vibrations of viscoelastic pipelines conveying two-phase medium in a slug flow regime. Bulletin of Tomsk State University, Mathematics and Mekanika. (61), pp. 95–110. (2019). [Google Scholar]
  23. Khudayarov B.A. and Turaev F.Z. Nonlinear vibrations of fluid transporting pipelines on a viscoelastic foundation, Magazine of Civil Engineering 86 (2). pp. 30–45. DOI: 10.18720/MCE.86.4. (2019). [Google Scholar]
  24. Khudayarov B.A. and Turaev F.Z., Nonlinear supersonic flutter for the viscoelastic orthotropic cylindrical shells in supersonic flow, Aerospace Science and Technology, 84 p. 120–130. DOI: 10.1016/j.ast.2018.08.044. (2019) [Google Scholar]
  25. Khudayarov B.A., Flutter of a viscoelastic plate in a supersonic gas flow. International Applied Mechanics. 46 (4), p. 455–460. (2010). [Google Scholar]
  26. Khudayarov B.A. and Bandurin N.G., Numerical investigation of nonlinear vibrations of viscoelastic plates and cylindrical panels in a gas flow. Journal of Applied Mechanics and Technical Physics. 48 (2), pp. 279–284. (2007) [CrossRef] [Google Scholar]
  27. Khudayarov B.A. Flutter analysis of viscoelastic sandwich plate in supersonic flow. American Society of Mechanical Engineers, Applied Mechanics Division, AMD 256, pp. 11–17. (2005). [Google Scholar]
  28. Khudayarov B.A. Numerical analysis of the nonlinear flutter of viscoelastic plates. International Applied Mechanics. 41 (5), pp. 538–542. (2005). [CrossRef] [Google Scholar]
  29. Khudayarov B.A., Behavior of viscoelastic three-layered structures in a gas flow. Problems of machine building and reliability of machines. (6), pp. 87–90. (2004). [Google Scholar]
  30. Filippov, I. G. and Kudainazarov, K. Refinement of equations describing longitudinal-radial vibrations of a circular cylindrical viscoelastic shell. Soviet Applied Mechanics, 26 (2), 161–168. DOI: 10.1007/bf00887110. (1990). [Google Scholar]
  31. Filippov, I. G. & Kudainazarov, K. General transverse vibrations equations for a circular cylindrical viscoelastic shel. Soviet Applied Mechanics, 26 (4), pp 351–357. DOI: 10.1007/bf00887127. (1990). [Google Scholar]
  32. Filippov, I. G.and Kudainazarov, K. Boundary-value problems of longitudinal vibrations of circular cylindrical shells. International Applied Mechanics, 34(12), 1204–1210. DOI: 10.1007/bf02700874. (1998). [Google Scholar]
  33. Abdullayev, A.A., Ergashev, T.G. Poincare-tricomi problem for the equation of a mixed elliptico-hyperbolic type of second kind. Vestnik Tomskogo Gosudarstvennogo Universiteta, Matematika i Mekhanika, (65), pp. 5–21, (2020). [Google Scholar]
  34. DOI: 10.17223/19988621/65/1 [Google Scholar]
  35. Islomov B. I. Abdullayev A.A. On a problem for an elliptic type equation of the second kind with a conormal and integral condition. Nanosystems: Physics, Chemistry, Mathematics, 9 (3), pp. 307–318, DOI: 10.17586/22208054201893307318. (2018) [Google Scholar]
  36. T.K. Yuldashev, B.I. Islomov, A.A. Abdullaev. On solvability of a Poincare-Tricomi Type Problem for an Elliptic-hyperbolic Equation of the Second Kind. Lobachevskii Journal of Mathematics, 42, (3), pp. 662–674. (2021) [Google Scholar]
  37. DOI: 10.1134/S1995080221030239 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.