Open Access
Issue
E3S Web Conf.
Volume 266, 2021
Topical Issues of Rational Use of Natural Resources 2021
Article Number 01019
Number of page(s) 9
Section New Sustainable Approaches to the Challenges of the Oil and Gas Sector
DOI https://doi.org/10.1051/e3sconf/202126601019
Published online 04 June 2021
  1. A. A. Olajire A review of oil field scale management technology for oil and gas production, Journal of Petroleum Science and Engineering, 135, 723–737 (2015). [Google Scholar]
  2. T. Zhu, L. Wang, W. Sun, M. Wang, J. Tian, Z. Yang The role of corrosion inhibition in the mitigation of CaCO3 scaling on steel surface, Corrosion Science, 140, 182–195 (2018). [Google Scholar]
  3. M. Chaussemier, E. Pourmohtasham, D. Gelus, N. Pecoul, H. Perrot, J. Ledion, H. Cheap-charpeneter, O. Horner State of art of natural inhibitors of calcium carbonate scaling. A review article, Deslaniation, 356, 47–55 (2015). [Google Scholar]
  4. H. Guan Scale Deposition Control and Management in Subsea Fields, NACE International, 1–12 (2015). [Google Scholar]
  5. A. Antony, J. H. Low, S. Gray, A. E. Childress, P. Le-Clech, G. Leslie Scale formation and control in high pressure membrane water treatment systems: A review, Journal of Membrane Science, 383, 1–16 (2011). [Google Scholar]
  6. J. Azizi, S. R. Shadizadeh, A. Khaksar Manshad, A. H. Mohammadi A dynamic method for experimental assessment of scale inhibitor efficiency in the oil recovery process by water flooding, Petroleum, 5(3), 303–314 (2019). [Google Scholar]
  7. A. Khormali, D. G. Petrakov Laboratory investigation of a new scale inhibitor for preventing calcium carbonate precipitation in oil reservoirs and production equipment, Petroleum Science, 13(2), 320–327 (2016). [Google Scholar]
  8. J. Zotzmann, A. Vetter, S. Regenspurg Evaluating efficiency and stability of calcite scaling inhibitors at high pressure and high temperature in laboratory scale, Geothermal Energy, 6(18), 1–13 (2018). [Google Scholar]
  9. A. Zeino, M. Albakri, M. Khaled, M. Zarzour Comparative study of the synergistic effect of ATMP and DTPMPA on CaSO4 scale inhibition and evaluation of induction time effect, Journal of Water Process Engineering, 21, 1–8 (2018). [Google Scholar]
  10. H. Zhang, X. Lou, X. Lin, P. Tang, X. Lu, M. Yang, Y. Tang Biodegradable carboxymethyl inulin as a scale inhibitor for calcite crystal growth: Molecular level understanding, Desalination, 381, 1–7 (2016). [Google Scholar]
  11. Q. ZhenHua, C. YongChang, W. XiuRong, S. Cheng, L. YunJie, M. ChongFang Experimental study on scale inhibition performance of a green scale inhibitor polyaspartic acid, Science in China, Series B: Chemistry, 51(7), 695–699 (2008). [Google Scholar]
  12. D. Hasson, H. Shemer, A. Sher State of the art of friendly “green” scale control inhibitors: A review article, Industrial and Engineering Chemistry Research, 50(12), 7601–7607 (2011). [Google Scholar]
  13. T. Kumar, S. Vishwanatham, S. S. Kundu A laboratory study on pteroyl-l-glutamic acid as a scale prevention inhibitor of calcium carbonate in an aqueous solution of synthetic produced water, Journal of Petroleum Science and Engineering, 71(1-2), 1–7 (2010). [Google Scholar]
  14. A. Martinod, M. Euvrard, A. Fiossy, A. Neville Electrodeposition of a calcareous layer: Effects of green inhibitors, Chemical Engineering Science, 64, 2413–2421 (2009). [Google Scholar]
  15. M. Schweinsberg, W. Hater, J. Verdes New Stable Biodegradable Scale Inhibitor Formulations for Cooling Water: Development and Field Tests, 64th International Water Conference, (2003). [Google Scholar]
  16. D. Liu, W. Dong, F. Li, F. Hui, J. Ledion Comparative performance of polyepoxysuccinic acid and polyaspartic acid on scaling inhibition by static and rapid controlled precipitation methods, Desalination, 304, 1–10 (2012). [Google Scholar]
  17. S. Yonghong, X. Wenhua, W. Ying Study on polyepoxysuccinic acid reverse osmosis scale inhibitor, Journal of Environmental Sciences, 21(1), 73–75 (2009). [Google Scholar]
  18. D. L. Verraest, J.A. Peters, H. Bekkum Carboxymethyl Inulin: a new inhibitor for calcium carbonate precipitation, JAOCS, 73(1), 55–62 (1996). [Google Scholar]
  19. S. Kirboga, M. Oner Investigation of calcium carbonate precipitation in the presence of carboxymethyl inulin, CrystEngComm, 18, 3678–3686 (2013). [Google Scholar]
  20. S. Kirboga, M. Oner The inhibitory effects of carboxymethyl inulin on the seeded growth of calcium carbonate, Colloids and Surfaces B: Biointerfaces, 91, 18–25 (2012). [Google Scholar]
  21. P. Zhang, Y. Lui, A. T. Kan, M. B. Tomson Laboratory evaluation of the synergistic effect of transition metals with mineral scale inhibitor in controlling halite scale deposition, Journal of Petroleum Science and Engineering, 175, 120–128 (2019). [Google Scholar]
  22. A. M. Abdel-Gaber, B.A. Abd-El-Nabey, E. Khamis, D.E. Abd-El-Khalek Investigation of fig leaf extract as a novel environmentally friendly antiscalant for CaCO3 calcareous deposits, desalination 230, 314–328 (2008). [Google Scholar]
  23. O. Lee, B. Lee, J. Lee, H. Lee, J. Son, C. Park, K. Shetty, Y. Kim Assessment of phenolics-enriched extract and fractions of olive leaves and their antioxidant activities, Bioresource Technology, 100(23), 6107–6113 (2009). [CrossRef] [PubMed] [Google Scholar]
  24. R. Menzri, S. Ghizellaoui, M. Tlili Calcium carbonate inhibition by green inhibitors: Thiamine and Pyridoxine, Desalination, 404, 147–154 (2017). [Google Scholar]
  25. J. Moghadasi, M. Jamialahmadi, H. Muller-Steihagen, A. Sharif, A. Ghalambor, M.R. Izadpanah, E. Motei Scale Formation in Iranian Oil Reservoir and Production Equipment During Water Injection, SPE, (2003). [Google Scholar]
  26. O. Vazquez, P. Herrero, E. Mackey, M. Jordan Nonaqueous vs aqueous overflush scale inhibitor squeeze treatment in an oilfield offshore Norway, Journal of Petroleum Science and Engineering, 138, 1–10 (2016). [Google Scholar]
  27. H. Sharma, K. K. Mohanty An experimental and modeling study to investigate brinerock interactions during low salinity water flooding in carbonates, Journal of Petroleum Science and Engineering, 165, 1021–1039 (2018). [Google Scholar]
  28. A. H. Nikoo, L. Mahmoodi, M. R. Malayeri, A. Kalantariasl Gypsum-brine-dolomite interfacial interactions in the presence of scale inhibitor, Chemical Engineering Science, 222, 115718 (2020) [Google Scholar]
  29. K. Jarrahian, K. S. Sorbie, M. A. Singleton, L. S. Boak, A.J. Graham The Effect of pH and Mineralogy on the Retention of Polymeric Scale Inhibitors on Carbonate Rocks for Application in Squeeze Treatments, SPE Production & Operations, 34(2), 1–17 (2018). [Google Scholar]
  30. A. Valiakhmetova, K. S. Sorbie, L. S. Boak, S. S. Shaw Solubility and Inhibition Efficiency of Phosphonate Scale Inhibitor-Calcium-Magnesium Complexes for Application in Precipitation, SPE, (2016). [Google Scholar]
  31. A. Khormali, D. G. Petrakov, R. Nazari Moghaddam Study of adsorption/desorption properties of a new scale inhibitor package to prevent calcium carbonate formation during water injection in oil reservoirs, Journal of Petroleum Science and Engineering, 153, 257–267 (2017). [Google Scholar]
  32. J. M. M. Ibrahim, K. Sorbie, L. S. BoakCoupled Adsorption / Precipitation Experiments: Non-Equilibrium Sand Pack Treatments, SPE International Conference on Oilfield Scale, (2011). [Google Scholar]
  33. N. Arsalan, S. S. Palayangoda, D. J. Burnett, J. JBuiting, Q.P. Nguyen Surface energy characterization of carbonate rocks, Colloids and Surfaces: Physicochemical and Engineering Aspects, 436, 139–147 (2013). [Google Scholar]
  34. J. Moghadasi, H. Muller-Steihagen, M. Jamialahmadi, A. Sharif. SCALE DEPOSITS IN POROUS MEDIA AND THEIR REMOVAL BY EDTA INJECTION. 7th Iternational Conference on Heat Exchanger Fouling and Cleaning-Challenges and Opportunities, (2007). [Google Scholar]
  35. K. Jarrahian, M. Sigleton, L. Boak, K. S. Sorbie Surface Chemistry of Phosphonate Scale Inhibitor Retention Mechanisms in Carbonate Reservoirs, Crystal Growth and Design, 20(8), 5356–5372 (2020). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.