Open Access
Issue |
E3S Web Conf.
Volume 266, 2021
Topical Issues of Rational Use of Natural Resources 2021
|
|
---|---|---|
Article Number | 02016 | |
Number of page(s) | 10 | |
Section | Technologies of Complex Processing of Mineral Raw Materials | |
DOI | https://doi.org/10.1051/e3sconf/202126602016 | |
Published online | 04 June 2021 |
- J. Anchita. HYDRO-IMP Technology for Upgrading of Heavy Petroleum. Journal of Mining Institute, 224, 229–234 (2017) [Google Scholar]
- N. K. Kondrasheva, D. O. Kondrashev. Modern hydroprocesses for the synthesis of high-quality low-viscous marine fuels. Catalysis in Industry, 9(1), 1–9 (2017) [Google Scholar]
- Y. Ji et al. Promoting effects in hydrogenation and hydrodesulfurization reactions on the zirconia and titania supported catalysts. Applied Catalysis A: General, 257(2), 157–164 (2004) [Google Scholar]
- A. A. Pavlovich, V. A. Korshunov, A. A. Bazhukov, N. Ya. Melnikov Assessment of the strength of a rock mass in the development of deposits by an open method. Journal of Mining Institute, 239, 502–509 (2019) [Google Scholar]
- G. M. Penkov, D. A. Karmansky, D. G. Petrakov. Simulation of a fluid influx in complex reservoirs of Western Siberia. Topical Issues of Rational Use of Natural Resources: Proceedings of the International Forum-Contest of Young Researchers. April 18-20. St. Petersburg. Russia, 119 p. (CRC Press, 2018) [Google Scholar]
- A. G. Pevneva, G. Penkov, M. D. Bakiev. On designing a computational experiment system for various engineering interpretations of a global optimization problem. ARPN Journal of Engineering and Applied Sciences, 12, 1219–1225 (2017) [Google Scholar]
- X. Wang et al. Synthesis of NiMo catalysts supported on mesoporous Al2O3 with different crystal forms and superior catalytic performance for the hydrodesulfurization of dibenzothiophene and 4, 6-dimethyldibenzothiophene. Journal of Catalysis, 344, 680–691 (2016) [Google Scholar]
- L. Zhang et al. CoMo catalyst on zeolite TS-1 nanorod assemblies with high activity in the hydrodesulfurization of 4.6-dimethyldibenzothiophene. Journal of Catalysis, 359, 130–142 (2018) [Google Scholar]
- I. Vazquez-Garrido et al. Effect of support on the acidity of NiMo/Al2O3-MgO and NiMo/TiO2-Al2O3 catalysts and on the resulting competitive hydrodesulfurization/hydrodenitrogenation reactions. Fuel, 236, 55–64 (2019) [CrossRef] [Google Scholar]
- W.S. Millman, M. Crespin, A.C. CIRILLO, A.W.K. Hall. The Surface Chemistry of Reduced Molybdena-Alumina Catalysts. JOURNAL OF CATALYSIS, 60, 404–416 (1979) [Google Scholar]
- R. H. Ebel, D. P. Spitzer, W. E. Bambrick, Hydrodesulfurization catalysts based on supports prepared from rehydratable alumna, (USA, 1978) [Google Scholar]
- M. Del Arco et al. Surface species formed upon supporting molybdena on alumina by mechanically mixing both oxides. Journal of Catalysis, 48–57 (1993) [Google Scholar]
- P. A. Nikulshin. Molekulyarnyj dizajn katalizatorov gidroochistky na osnove geteropolisoedinenij helatonov i zauglerozhennyh nositelej. dis. … dok. him. Nauk, 5075 (Samara, 2015) [Google Scholar]
- D. Laurenti et al. Intrinsic potential of alumina-supported CoMo catalysts in HDS: Comparison between ye, yt, and 5-alumina. Journal of Catalysis, 297, 165–175 (2013) [Google Scholar]
- V. M. Sizyakov, V. Y. Bazhin, E. V. Sizyakova. Feasibility study of the use of nepheline-limestone charges instead of bauxite. Metallurgis, 59(11), 1135–1141 (2016) [Google Scholar]
- A. Tanimu, K. Alhooshani Advanced Hydrodesulfurization Catalysts: A Review of Design and Synthesis, Energy and Fuels, 33(4), 2810–2838 (American Chemical Society, 2019) [Google Scholar]
- R. Geoffrey, M. K. Wilson, US Patent-Hydrodesulfurization catalyst and process for producing the same, (USA, 1977) [Google Scholar]
- A. L. Dicks et al. A study of relationships between pore size distribution, hydrogen chemisorption, and activity of hydrodesulphurisation catalysts. Journal of Catalysis, 72(2), 266–273 (1981) [Google Scholar]
- J. Leyrer et al. Structure and surface properties of supported oxides. Materials Chemistry and Physics, 13(3-4), 301–314 (1985) [Google Scholar]
- H. Shimada et al. Support effect on the catalytic activity and properties of sulfided molybdenum catalysts. Journal of Catalysis, 110(2), 275–284 (1988) [Google Scholar]
- T. Kazushi Usui, K. O. Fujikawa, Catalyst composition for hydrodesulfurization of hydrocarbon oil and process for producing the same, (1993) [Google Scholar]
- F. Rashidi et al. Ultradeep hydrodesulfurization of diesel fuels using highly efficient nanoalumina-supported catalysts: Impact of support, phosphorus, and/or boron on the structure and catalytic activity. Journal of Catalysis, 299, 321–335 (2013) [Google Scholar]
- C. J. Pereira, L. Hegedus, Catalyst with high geometric surface area alumina extrudate and catalyst with high geometric surface area, (USA, 1985) [Google Scholar]
- Rinaldi, N. et al. 2009. Preparation of Co-Mo/B2O3/Al2O3 catalysts for hydrodesulfurization: Effect of citric acid addition. Applied Catalysis A: General, 360(2), 130–136 [CrossRef] [Google Scholar]
- Usman et al. The effect of boron addition on the hydrodesulfurization activity of MoS2/Al2O3 and Co-MoS2/Al2O3 catalysts. Journal of Catalysis, 227(2), 523–529 (Academic Press, 2004) [Google Scholar]
- Usman et al. Effect of boron addition on the surface structure of Co-Mo/Al2O3 catalysts. Journal of Catalysis, 247(1), 78–85 (Academic Press, 2007) [Google Scholar]
- J. P. R. Vissers et al. Carbon-covered alumina as a support for sulfide catalysts, Journal of Catalysis, 114(2), 291–302 (Academic Press, 1988) [Google Scholar]
- O. V. Klimov et al. CoMo/Al2O3 hydrotreating catalysts of diesel fuel with improved hydrodenitrogenation activity. Catalysis Today, 307, 73–83 (Elsevier B.V., 2018) [Google Scholar]
- T. N. Vdovina, A. S. Belyj, M. D. Smolikov. Raspredelenie aktivnogo komponenta po poram raznogo razmera v strukture oksidnyh nositelej. Kinetika i kataliz, 31(4), (1990) [Google Scholar]
- T. Kamo, Method of preparing catalysts for hydrogenation of hydrocarbon oil. (USA, 1993) [Google Scholar]
- A. Ishihara, M. Nomura, T. Kabe. Hydrodesulfurization of Dibenzothiophene Catalyzed by Supported Metal Carbonyl Complexes (Part 2) Hydrodesulfurization Catalysts Prepared from Alumina-supported Anionic Ruthenium Carbonyls. Journal of The Japan Petroleum Institute, 37(3), 300–310 (1994) [Google Scholar]
- A. Ishihara, M. Nomura, T. Kabe. Hydrodesulfurization of Dibenzothiophene Catalyzed by Supported Metal Carbonyl Complexes (Part 2) Hydrodesulfurization Catalysts Prepared from Alumina-supported Anionic Ruthenium Carbonyls. Journal of The Japan Petroleum Institute, 37(3), 300–310 (1997) [Google Scholar]
- S. Eijsbouts, L. C. A. Van Den Van Oetelaar, R.R.. Puijenbroek MoS2 morphology and promoter segregation in commercial Type 2 Ni-Mo/Al2O3 and Co-Mo/Al2O3 hydroprocessing catalysts. Journal of Catalysis, 229(2), 352–364 (2005) [Google Scholar]
- K. A. Nadeina et al. A Catalyst for Selective Hydrotreatment of Non-Prefractionated FCC Gasoline. Kataliz v promyshlennosti, 16(6), 57–64 (2016) [Google Scholar]
- V. V. Danilevich et al. Novel eco-friendly method for preparation of mesoporous alumina from the product of rapid thermal treatment of gibbsite. Superlattices and Microstructures, 120, 148–160 (Elsevier, 2018) [Google Scholar]
- Y. V. Vatutina et al. Influence of the phosphorus addition ways on properties of CoMo-catalysts of hydrotreating. Catalysis Today, 329, 13–23 (Elsevier, 2019) [Google Scholar]
- V. K. Holl. Genezis i svojstva molibden alyuminievyh i rodstvennyh katalizatorov. Problemy sovremennogo kataliza. Trudy mezhdunarodnoj konferencii pamyati G.K. Boreskova, (Novosibirsk, 1988) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.