Open Access
E3S Web Conf.
Volume 266, 2021
Topical Issues of Rational Use of Natural Resources 2021
Article Number 02019
Number of page(s) 12
Section Technologies of Complex Processing of Mineral Raw Materials
Published online 04 June 2021
  1. D. Pakhare, J. Spivey A review of dry (CO2) reforming of methane over noble metal catalysts. Chemical Society Reviews, 43(22), 7813–7837 (2014) [Google Scholar]
  2. C. Rameshan, H. Li, K. Anic, M. Roiaz, V. Pramhaas, R. Rameshan R. Blume, M. Haevecker, J. Knudsen, A. Knop-Gericke, G. Rupprechter. In situ NAP-XPS spectroscopy during methane dry reforming on ZrO2/Pt(111) inverse model catalyst. Journal of Physics-Condensed Matter, 30(26), (2018) [Google Scholar]
  3. F. Solymosi, G. Kutsan, A. Erdohelyi CATALYTIC REACTION OF CH4 WITH CO-2 OVER ALUMINA-SUPPORTED PT METALS. Catalysis Letters, 11(2), 149–156 (1991) [Google Scholar]
  4. A. Kuzhaeva, N. Dzhevaga, I. Berlinskii The Processes of hydrocarbon conversion using catalytic systems. International Scientific Conference on Applied Physics, Information Technologies and Engineering (Apitech-2019), 1399, (2019) [Google Scholar]
  5. J.W. Nam, H. Chae, S.H. Lee, H. Jung, K.Y. Lee Methane dry reforming over well-dispersed Ni catalyst prepared from perovskite-type mixed oxides. Natural Gas Conversion V, 119, 843–848 (1998) [Google Scholar]
  6. A.C. Luntz, J. Harris CH4 DISSOCIATION ON METALS - A QUANTUM DYNAMICS MODEL. Surface Science, 258(1-3), 397–426 (1991) [Google Scholar]
  7. D.C. Seets, M.C. Wheeler, C.B. Mullins Mechanism of the dissociative chemisorption of methane over Ir(110): Trapping-mediated or direct? Chemical Physics Letters, 266(5-6), 431–436 (1997) [Google Scholar]
  8. M.C.J. Bradford, M.A. Vannice CO2 reforming of CH4. Catalysis Reviews-Science and Engineering, 41(1), 1–42 (1999) [Google Scholar]
  9. A. Horvath, G. Stefler, O. Geszti, A. Kienneman, A. Pietraszek, L. Guczi Methane dry reforming with CO2 on CeZr-oxide supported Ni, NiRh and NiCo catalysts prepared by sol-gel technique: Relationship between activity and coke formation. Catalysis Today, 169(1), 102–111 (2011) [Google Scholar]
  10. J.B. Claridge, M.L.H. Green, S.C. Tsang, A.P.E. York, A.T. Ashcroft, P.D. Battle A STUDY OF CARBON DEPOSITION ON CATALYSTS DURING THE PARTIAL OXIDATION OF METHANE TO SYNTHESIS GAS. Catalysis Letters, 22(4), 299–305 (1993) [Google Scholar]
  11. E. Ruckenstein, Y.H. Hu Carbon dioxide reforming of methane over nickel alkaline earth metal oxide catalysts. Applied Catalysis a-General, 133(1), 149–161 (1995) [Google Scholar]
  12. L.G. Tejuca, J.L.G. Fierro, J.M.D. Tascon STRUCTURE AND REACTIVITY OF PEROVSKITE-TYPE OXIDES. Advances in Catalysis, 36, 237–328 (1989) [Google Scholar]
  13. B. Hua, M. Li, Y.F. Sun, J.H. Li, J.L. Luo Enhancing Perovskite Electrocatalysis of Solid Oxide Cells Through Controlled Exsolution of Nanoparticles. Chemsuschem, 10(17), 3333–3341 (2017) [Google Scholar]
  14. T. Wei, L.C. Jia, H.Y. Zheng, B. Chi, J. Pu, J. Li, LaMnO3-based perovskite with in-situ exsolved Ni nanoparticles: a highly active, performance stable and coking resistant catalyst for CO2 dry reforming of CH4. Applied Catalysis a-General, 564, 199–207 (2018) [Google Scholar]
  15. D. Zubenko, S. Singh, B.A. Rosen Exsolution of Re-alloy catalysts with enhanced stability for methane dry reforming. Applied Catalysis B-Environmental, 209, 711–719 (2017) [Google Scholar]
  16. L. Lindenthal, R. Rameshan, H. Summerer, T. Ruh, J. Popovic, A. Nenning, S. Loffler, A.K. Opitz, P. Blaha, C. Rameshan Modifying the Surface Structure of Perovskite-Based Catalysts by Nanoparticle Exsolution. Catalysts, 10(3), (2020) [Google Scholar]
  17. M.P. Pechini Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor. (U.S. Patent No. 3.330.697(304434), 1967) [Google Scholar]
  18. T. Degen, M. Sadki, E. Bron, U. König, G. Nénert The HighScore suite. Powder Diffraction, 29, S13–S18 (2014) 19. PDF-4+ 2019. (ICDD, 2018) [Google Scholar]
  19. S. Brunauer, P.H. Emmett, E. Teller Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309–319 (1938) [Google Scholar]
  20. L.J. Liu, C.Y. Zhao, Y. Li Spontaneous Dissociation of CO2 to CO on Defective Surface of Cu(I)/TiO2-x Nanoparticles at Room Temperature. Journal of Physical Chemistry C, 116(14), 7904–7912 (2012) [Google Scholar]
  21. J. Popovic, L. Lindenthal, R. Rameshan, T. Ruh, A. Nenning, S. Loffler, A.K. Opitz, C. Rameshan High Temperature Water Gas Shift Reactivity of Novel Perovskite Catalysts. Catalysts, 10(5), (2020) [Google Scholar]
  22. H. Lorenz, Q.A. Zhao, S. Turner, O.I. Lebedev, G. Van Tendeloo, B. Klotzer, C. Rameshan, K. Pfaller, J. Konzett, S. Penner Origin of different deactivation of Pd/SnO2 and Pd/GeO2 catalysts in methanol dehydrogenation and reforming: A comparative study. Applied Catalysis a-General, 381(1-2), 242–252 (2010) [Google Scholar]
  23. S.M. de Lima, J.M. Assaf Ni-Fe catalysts based on perovskite-type oxides for dry reforming of methane to syngas. Catalysis Letters, 108(1-2), 63–70 (2006) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.