Open Access
Issue
E3S Web Conf.
Volume 266, 2021
Topical Issues of Rational Use of Natural Resources 2021
Article Number 03006
Number of page(s) 9
Section Geotechnologies of Subsurface Development: Modern Challenges and Prospects
DOI https://doi.org/10.1051/e3sconf/202126603006
Published online 04 June 2021
  1. H.Z. Abidin, H. Andreas, I. Gumilar, Y. Fukuda, Y.E. Pohan, T. Deguchi, Land subsience of Jakarta (Indonesia) and its relation with urban development. Natural Hazards, 59(3), 1753. (2011). [Google Scholar]
  2. H. Rajaoalison, A. Zlotkowski, G. Rambolamanana, Mechanical properties of sandstone using non-destructive method. Journal of Mining Institute, 241, 113–117. (2020). [Google Scholar]
  3. T.L. Holzer, R.L. Bluntzer, Land Subsidence near Oil and Gas Fields, Houston, Texas. Groundwater, 22 (4), 450–459. (1984). [Google Scholar]
  4. R.G. Allis, Review of subsidence at Wairakei field, New Zealand. Geothermics, 29 (4-5), 455–478. (2000). [Google Scholar]
  5. D. Knez, A. Calicki, Looking for a new source of natural proppants in Poland. Bulletin of the Polish Academy of Sciences. Technical Sciences, 66 (1). (2018). [Google Scholar]
  6. C. Wang, H. Zhang, Z. Liu, S. Cheng, G. Lu, Satellite interferometric observations ofdisplacements associated with urban subsidence in Suzhou, Eastern China. Changes, 4(3) (2002). [Google Scholar]
  7. H. Fan, K. Deng, C. Ju, C. Zhu, J. Xue, Land subsidence monitoring by D-InSAR technique. Mining Science and Technology (China), 21 (6), 869–872. (2011). [Google Scholar]
  8. S. Atzori, A. Antonioli, C. Tolomei, V. De Novellis, C. De Luca, F. Monterroso, InSAR full-resolution analysis of the 2017-2018 M>6 earthquakes in Mexico. Remote Sensing of Environment, 234, 111461. (2019). [Google Scholar]
  9. I. Ahmad Abir, S.D. Khan, A. Ghulam, S. Tariq, M.T. Shah, Active tectonics of westernPotwar Plateau-Salt Range, northern Pakistan from InSAR observations and seismic imaging. Remote Sensing of Environment, 168, 265–275 (2015). [Google Scholar]
  10. B.M. Popescu, Hydrocarbons of Eastern Central Europe (Springer, 1994). [Google Scholar]
  11. W.D. Barnhart, W.L. Yeck, D.E. McNamara, Induced earthquake and liquefaction hazards in Oklahoma, USA: Constraints from InSAR. Remote Sensing of Environment, 218, 1–12 (2018). [Google Scholar]
  12. E. Chaussard, S. Wdowinski, E. Cabral-Cano, F. Amelung, Land subsidence in central Mexico detected by ALOS InSAR time-series. Remote Sensing of Environment, 140, 94–106 (2014). [Google Scholar]
  13. Tao Li, Jingnan Liu, Mingsheng Liao, Shaojun Kuang, Xu Lu, Monitoring city subsidence by D-InSAR in Tianjin area. IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium, 5, 3333–3336 (2004). [Google Scholar]
  14. Y. Guoqing, M. Jingqin, D-InSAR Technique for Land Subsidence Monitoring. Earth Science Frontiers, 15(4), 239–243 (2008) [Google Scholar]
  15. F. Qu, Z. Lu, Q. Zhang, G.W. Bawden, J.-W. Kim, C. Zhao, W. Qu, Mapping ground deformation over Houston-Galveston, Texas using multi-temporal InSAR. Remote Sensing of Environment, 169, 290–306. (2015). [Google Scholar]
  16. F. Grassi, F. Mancini, Sentinel-1 data for ground deformation monitoring: the SNAP StaMPS workflow. Workshop Tematico di Telerilevamento-Bologna. 26. (2019). [Google Scholar]
  17. P. Snoeij, E. Attema, M. Davidson, B. Duesmann, N. Floury, G. Levrini, B. Rommen, B. Rosich, The Sentinel-1 radar mission: Status and performance. 2009 International Radar Conference “Surveillance for a Safer World” (RADAR 2009). IEEE, 1–6.(2009). [Google Scholar]
  18. Story Map Series [online], Available from: http://geologia.pgi.gov.pl/arcgis/apps/MapSeries/index.html?appid=8d14826a895641e 2be10385ef30 5b3c [Accessed 31 Aug 2020].(2020). [Google Scholar]
  19. Gdansk Population [online], Available from: http://population.city/poland/gdansk/ [Accessed 31 Aug 2020].(2020). [Google Scholar]
  20. Statistical Office in Gdansk [online], Available from: https://gdansk.stat.gov.pl/en/ [Accessed 31 Aug 2020].(2020). [Google Scholar]
  21. P. Wiejacz, and W. Dçbski, Podhale, Poland, earthquake of November 30, 2004. Acta Geophysica, 57(2), 346–366.(2009). [Google Scholar]
  22. G. Lizurek, Full moment tensor inversion as a practical tool in case of discrimination of tectonic and anthropogenic seismicity in Poland. Pure and Applied Geophysics, 174 (1), 197–212. (2017). [Google Scholar]
  23. S. Lasocki, Quantitative evidences of complexity of magnitude distribution in mining-induced seismicity: Implications for hazard evaluation. In: The Fifth Int. Symp. onRockbursts and Seismicity in Mines (RaSiM 5) 'Dynamic rock mass response to mining. 543–550.(2001). [Google Scholar]
  24. M. Meghraoui, Z. Çakir, Y. Bouhadad, InSAR analysis of a blind thrust rupture and related active folding: the 1999 Ain Temouchent earthquake (M w 5.7, Algeria) case study. Journal of Seismology, 13 (4), 421–432.(2009). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.