Open Access
Issue
E3S Web Conf.
Volume 266, 2021
Topical Issues of Rational Use of Natural Resources 2021
Article Number 07006
Number of page(s) 13
Section Geological Mapping, Exploration, and Prospecting of Mineral Resources
DOI https://doi.org/10.1051/e3sconf/202126607006
Published online 04 June 2021
  1. Gavrilenko, M., Herzberg, C., Vidito, C., Carr, M., Tenner, T., Ozerov, A. A Calcium- in-Olivine Geohygrometer and its Application to Subduction Zone Magmatism. Journal of Petrology 57, 1811–1832 (2016). [Google Scholar]
  2. Carracedo, J.C. & Troll, V. The Geology of the Canary Islands. 1st Edition. Amsterdam: Elsevier (2016). [Google Scholar]
  3. Contrucci, I., Klingelhoefer, F., Perrot, J., Bartolomé, R., Gutscher, M.-A., Sahabi, M., Malod, J., Rehault, J.-P. The crustal structure of the NW Moroccan continental margin from wide-angle and reflection seismic data. Geophys. J. Int. 159, 117–128 (2004). [Google Scholar]
  4. Anguita, F. & Hernán, F. The Canary Islands origin: a unifying model. J. Volcanol. Geotherm. Res. 103, 1–26 (2000). [Google Scholar]
  5. Gurenko, A.A., Hoernle, K.A., Hauff, F., Schmincke, H.-U., Han, D., Miura, Y.N., Kaneoka, I. Major, trace element and Nd-Sr-Pb-O-He-Ar isotope signatures of shield stage lavas from the central and western Canary Islands: insights into the mantle and crustal processes. Chem. Geol. 233, 75–112 (2006). [Google Scholar]
  6. Longpré, M.A., Chadwick, J.P., Wijbrans, J., Iping, R. Age of the El Golfo debris avalanche, El Hierro (Canary Islands): new constraints from laser and furnace 40Ar/39Ar dating. J. Volcanol. Geotherm. Res. 203, 76–80 (2011). [Google Scholar]
  7. Pedrazzi, D., Marti, J. & Geyer, A. Stratigraphy, sedimentology and eruptive mechanisms in the tuff cone of El Golfo (Lanzarote, Canary Islands). Bull Volcanol. 75, 740 (2013). [Google Scholar]
  8. Fullea, J., Camacho, A. G., Negredo, A. M. Fernández, J. The Canary Islands hot spot: new insights from 3D coupled geophysical-petrological modeling of the lithosphere and uppermost mantle. Earth Planetary Science Letters 409, 71–88 (2015). [Google Scholar]
  9. Gómez-Ulla, A., Sigmarsson, O., Gudfinnsson, G. Trace element systematics of olivine from historical eruptions of Lanzarote, Canary Islands: Constraints on mantle source and melting mode. Chemical Geology 449, 99–111 (2016). [Google Scholar]
  10. Aparicio, A., Bustillo, M. A., Garcia, R. & Arana, V. Metasedimentary xenoliths in the lavas of the Timanfaya eruption (1730-1736, Lanzarote, Canary Islands): metamorphism and contamination processes. Geol. Mag. 143(2), 181–193 (2006). [Google Scholar]
  11. Banda, E., Danobeitia, J. J., Surinach, E. & Ansorge, J. Features of a crustal structure under the Canary Islands. Earth Planet. Sci. Lett. 55, 11–24 (1981). [Google Scholar]
  12. Carracedo, J.C., Badiola, E., Soler, V. Aspectosvolcanológicos y estructurales. Evoluciónpetrológica e implicaciones en riesgovolcánico de la erupción de 1730 en Lanzarote. Islas Canarias. EstudiosGeologicos 46, 25–55 (1990). [Google Scholar]
  13. Carracedo, J.C., Badiola, E., Soler, V. The 1730-1736 eruption of Lanzarote. Canary Islands: a long, high-magnitude basaltic fissure eruption. J. Volcanol. Geotherm. 53, 239–250 (1992). [Google Scholar]
  14. De Hoog, J.C.M., Gall, L., Cornell, D.H. Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry. Chem Geol. 270, 196–215 (2010). [Google Scholar]
  15. Deegan, F.M., Troll, V.R., Barker, A.K., Harris, C., Chadwick, J.P., Carracedo, J.C., Delcamp, A. Crustal versus source processes recorded in dykes from the Northeast volcanic rift zone of Tenerife, Canary Islands. Chemical Geology. 334, 324–344 (2012). [Google Scholar]
  16. Foley, S.F., Prelevic, D., Rehfeldt, T., Jacob, D.E. Minor and trace elements in olivines as probes into early igneous and mantle melting processes. Earth Planet SciLett. 363, 181–191 (2013). [Google Scholar]
  17. Geldmacher, J., Hoernle, K., van den Bogaard, P., Duggen, S., Werner, R. New 40Ar/39Ar age and geochemical data from seamounts in the Canary and Madeira volcanic province: support for the mantle plume hypothesis. Earth Planet. Sci. Lett. 237, 85–101 (2005). [Google Scholar]
  18. Larrea, P., França, Z., Lago, M., Widom, E., Galé, C., Ubide, T. Magmatic processes and the role of antecrysts in the genesis of Corvo Island (Azores archipelago, Portugal). Journal of Petrology. 54, 769–793 (2013). [Google Scholar]
  19. Lundstrom, C.C., Hoernle, K., Gill, J. U-series disequilibria in volcanic rocks from the Canary Islands: plume versus lithospheric melting. Geochim. Cosmochim. Acta 7, 4153–4177 (2003). [Google Scholar]
  20. Machin, A.H. & Torrado, P.F. The island and its territory: vulcanism in Lanzarote. A field trip guide. Sixth International Conference on Geomorphology: geomorphology in regions of environmental contrasts. Zaragoza, 7-11 September 2005. 1–39 (2005). [Google Scholar]
  21. Neumann, E. R., Sorensen, V., Simonsen, S.L., Johnsen, K. Gabbroic xenoliths from La Palma, Tenerife, and Lanzarote, Canary Islands: evidence for reactions between Canary Islands melts and old oceanic crust. J VolcanolGeotherm. 103, 313–342 (2000). [Google Scholar]
  22. Neumann, E. R., Wulff-Pedersen, E., Johnsen, K., Andersen, T., Krogh, E. Petrogenesis of spinel harzburgite and dunite suite xenoliths from Lanzarote, eastern Canary Islands: Implications for the upper mantle. Lithos. 35(1-2), 83–107 (1995). [Google Scholar]
  23. Okina, O.I., Lyapunov, S. M., Dubensky, A. S. et al. Ensuring the reliability of the results of trace element analysis of rocks by inductively coupled plasma mass spectrometry (ICP-MSj. Bull. MOIP. Geological Departmental. 92, 93–100 (2017). [Google Scholar]
  24. Putirka, K. Thermometers and Barometers for Volcanic Systems. Reviews in Mineralogy & Geochemistry. 69, 61–120 (2008). [Google Scholar]
  25. Roeder, P.E. & Emslie, R.F. Olivine-liquid equilibrium. Contrib. Mineral. Petrol. 29, 275–289 (1970). [Google Scholar]
  26. Soager, N., Portnyagin, M., Hoernle, K. et al. Olivine major and trace element compositions in Southern Payenia basalts, Argentina: evidence for pyroxeniteperidotite melt mixing in a back-arc setting. J. Petrol. 56, 1495–1518 (2015). [Google Scholar]
  27. Sobolev A.V., Hofmann, A.W., Sobolev, S.V., Nikogosian, I.K. An olivine-free mantle source of Hawaiian shield basalts. Nature. 434, 590–597 (2005). [Google Scholar]
  28. Sobolev, A.V., Hofmann, A.W., Kuzmin, D.V. et al. The amount of recycled crust in sources of mantle-derived melts. Science. 31(5823), 412–417 (2007). [Google Scholar]
  29. Sun, S.S. & McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications 42, 313–345 (1989). [Google Scholar]
  30. Widom, E., Hoernle, K.A., Shirey, S.B., Schmincke, H.-U. Os isotope systematics in the Canary Islands and Madeira: lithospheric contamination and mantle plume signatures. J. Petrol. 40, 297–314 (1999). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.