Open Access
E3S Web Conf.
Volume 267, 2021
7th International Conference on Energy Science and Chemical Engineering (ICESCE 2021)
Article Number 02016
Number of page(s) 6
Section Environmental Chemistry Research and Chemical Preparation Process
Published online 04 June 2021
  1. Jia, Q.H., Shi Y.B., Xu, X.J., Sun, L. Research progress on application of modified corncob in waste water treatment[J]. New Chemical Materials, 2020, 48(07): 34-37. [Google Scholar]
  2. Premarathna, K.S.D., Rajapaksha, A.U., Sarkar, B. et al. Biochar-based engineered composites for sorptive decontamination of water: A review. 2019, 372: 536-550. [Google Scholar]
  3. Xie, Q., Zhang, X.L., Li L.T., Jin, L. Porosity adjustment of activated carbon: theory approaches and practice[J]. New Carbon Materials, 2005 (02): 183-190. [Google Scholar]
  4. Fan, Y. Z., Wang, B.Z. Surface chemistry of activated carbon[J]. Coal Coversion, 2000 (04): 26-30. [Google Scholar]
  5. Chen, K.X., He, M.J., Zhang, J., Peng, S.M. Research progress on the mechanism of biochar for removal of typical water pollutants[J]. Functional Materials, 2020, 51(12): 12058-12064. [Google Scholar]
  6. Deng, X.D. Biomass carbon Materials for effective simulative nuclide stronium removal[D]. Southwest University of Science and Technology. 2016. [Google Scholar]
  7. Ai, L. The adsorption characteristics for sranium and stronium on sunflower biomass[D]. Southwest University of Science and Technology. 2014. [Google Scholar]
  8. Zhang, R. The application of biochar in the sorption radionuclides[D]. University of Science and Technology of China. 2017. [Google Scholar]
  9. Bashir, S., Jun, Z., Fu, Q.L., Hu, H.Q. Comparing the adsorption mechanism of Cd by rice straw pristine and KOH-modified biochar[J]. Environmental Science and Pollution Research, 2018, 25(12). [Google Scholar]
  10. Ma, Y., Liu, W.J., Zhang N., Li, Y.S., Jiang, H., Sheng, G.P. Polyethylenimine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution[J]. Bioresource Technology, 2014, 169. [Google Scholar]
  11. Chen, Y.Y., Wang B.Y., Xin, J., Sun, P., Wu, D. Adsorption behavior and mechanism of Cr(VI) by modified biochar derived from Enteromorpha prolifera[J]. Ecotoxicology and Environmental Safety, 2018, 164. [Google Scholar]
  12. Li, B., Yang, L., Wang, C.Q., Zhang, Q.P., Liu, Q.C., Li, Y.D., Xiao, R. Adsorption of Cd(II) from aqueous solutions by rape straw biochar derived from different modification processes[J]. Chemosphere, 2017, 175. [Google Scholar]
  13. An, Q., Li, X.Q., Nan, H.Y., Yu, Y., Jiang, J.N. The potential adsorption mechanism of the biochars with different modification processes to Cr(VI).[J]. Environmental science and pollution research international, 2018. [Google Scholar]
  14. An, Q., Jiang, Y.Q., Nan, H.Y., Yu, Y., Jiang J.N. Unraveling sorption of nickel from aqueous solution by KMnO4 and KOH-modified peanut shell biochar: Implicit mechanism[J]. Chemosphere, 2019, 214. [Google Scholar]
  15. Li, B.Y., Li, K.Q. Effect of nitric acid pre-oxidation concentration on pore structure and nitrogen/oxygen active decoration sites of ethylenediamine -modified biochar for mercury(II) adsorption and the possible mechanism[J]. Chemosphere, 2018. [Google Scholar]
  16. Luo, M.K., Lin, H., Li, B., Dong, Y.B., He, Y.H., Wang L. A novel modification of lignin on corncob-based biochar to enhance removal of cadmium from water[J]. Bioresource Technology, 2018, 259. [Google Scholar]
  17. Huang, D.L., Liu, C.H., Zhang, C., Deng, R, Wang, R.Z., Xue, W.J., Luo H., Zeng, G.M., Zhang, Q., Guo, X.Y. Cr(VI) removal from aqueous solution using biochar modified with Mg/Al-layered double hydroxide intercalated with ethylenediaminetetraacetic acid[J]. Bioresource Technology, 2019, 276. [Google Scholar]
  18. Yan, W. Study on characteristics different biochar and mechanisms for removing heavy metal ions in solution[D]. Shanghai Jiao Tong University, 2018. [Google Scholar]
  19. Gao, X.L., Guo, C., Zhang, H.F., etc. Research progress in the adsorption of strontium ions [J]. China Mining Magazine. 2011, 20(12): 103-107. [Google Scholar]
  20. Du, C., Zuo, R. Adsorption of cesium-containing wastewater by typical materials [D]. Journal of Beijing Normal University (Natural Science) [J]. 2020, 56(2): 188-194. [Google Scholar]
  21. Fan, F.Y. Study on preparation of biochar based on hydrothermal carbonization and pyrolysis of straw[D]. Hefei University of Technology, 2017 [Google Scholar]
  22. Han, L.F. Highly effificient U(VI) removal by chemically modifified hydrochar and pyrochar derived from animal manure[J]. Journal of Cleaner Production. 2020, 264. [Google Scholar]
  23. Chen, H.Y., Li, W.Y., Wang, J.J., Xu, H.J., Liu, Y.L., Zhang, Z, Li, Y.T., Zhang, Y.L. Adsorption of cadmium and lead ions by phosphoric acid-modifified biochar generated from chicken feather: Selective adsorption and inflfluence of dissolved organic matter[J]. Bioresource Technology. 2019, 292. [Google Scholar]
  24. Attia, L.A, Youssef, M.A, Abdel, M. Feasibility of radioactive cesium and europium sorption using valorized punica granatum peel: kinetic and equilibrium aspect[J]s. Separation Science and Technology, 2021, 56(2). [Google Scholar]
  25. Wang, X., Feng J.H., Cai, Y.W., Fang, M., Kong M.G., Alsaedi, A., Hayat, T., Tan, X.L. Porous biochar modified with polyethyleneimine (PEI) for effective enrichment of U(VI) in aqueous solution[J]. Science of the Total Environment, 2020, 708. [Google Scholar]
  26. Yang, G.X., Jiang, H.. Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater[J]. Water Research, 2014,48. [Google Scholar]
  27. Li, N., Yin, M.L., Daniel, Tsang, C.W., Yang, S.T., Liu J., Li, X., Song, G., Wang, J. Mechanisms of U(VI) removal by biochar derived from Ficus microcarpa aerial root: A comparison between raw and modified biochar[J]. Science of the Total Environment, 2019, 697. [Google Scholar]
  28. Li, M.X., Liu, H.B., Chen, T.H., Dong, C., Sun, Y.B. Synthesis of magnetic biochar composites for enhanced uranium(VI) adsorption[J]. Science of the Total Environment, 2018 [Google Scholar]
  29. Gan, C., Liu, Y.G., Tan, X.F., Wang, S.F., Zeng, G.M., Zheng, B.H., Li, T.T., Jiang, Z.J., Liu, W. Effect of porous Zinc-biochar nanocomposites on Cr(VI) adsorption from aqueous solution[J]. RSC Advances. 2015, 5. [Google Scholar]
  30. Khan, Z.H., Gao, M.L., Qiu, W.W., Islam, M.S., Song, Z.G. Mechanisms for cadmium adsorption by magnetic biochar composites in an aqueous solution[J]. Chemosphere, 2020, 246. [Google Scholar]
  31. Peng, Z.Y., Zhao, H., Liu, H.H., Wang, L., Huang, H., Nan, Q., Tang, J.C. UV modification of biochar for enhanced hexavalent chromium removal from aqueous solution[J]. Springer Berlin Heidelberg, 2018, 25(11). [Google Scholar]
  32. Dai, L.C., Li, L., Zhu, W.K., Ma, H.Q., Huang, H.G., Lu, Q., Yang, M., Ran, Y. Post-engineering of biochar via thermal air treatment for highly efficient pro motion of uranium(VI) adsorption[J]. Bioresource Technology. 2020, 298. [Google Scholar]
  33. Lu, H.J. Preparation of bamboo shoot shell biochar by torrefaction and its adsorption Properties of Cr(VI) from aqueous solution[D]. Fuzhou University, 2018. [Google Scholar]
  34. Fahmi, A.H., Samsuri A.W., Jola H., Singh D. Physical modification of biochar to expose the inner pores and their functional groups to enhance lead adsorption[J]. RSC Advances. 2018, 8, 38270. [Google Scholar]
  35. Irene, I.R., Mónica, C., Gabriel B., María Ángeles, M.L. Greenhouse Crop Residue and Its Derived Biochar: Potential as Adsorbent of Cobalt from Aqueous Solutions[J]. Water, 2020, 12(5). [Google Scholar]
  36. Wu, S.Q. Adsorption of uranium(VI) by modified coconut biochar[D]. University of South China, 2019. [Google Scholar]
  37. Jang, J., Miran, W., Sewu, D., Divine, Nawaz, M., Shahzad, A., Woo, S.H., Lee, D.S. Rice straw-based biochar beads for the removal of radioactive strontium from aqueous solution[J]. Science of the Total Environment, 2018, 615. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.