Open Access
Issue
E3S Web Conf.
Volume 267, 2021
7th International Conference on Energy Science and Chemical Engineering (ICESCE 2021)
Article Number 02031
Number of page(s) 4
Section Environmental Chemistry Research and Chemical Preparation Process
DOI https://doi.org/10.1051/e3sconf/202126702031
Published online 04 June 2021
  1. D. Zhuang, G. Zhang, Research status and development prospect of CIGS thin film solar cells. Advanced Materials Industry 4, 43–48 (2005) [Google Scholar]
  2. B. Wang, P. Liu, W. Li, F. Ma, X. Liu, X. Chen, Progress in research of CIGS thin film solar cells. Materials Reports 19, 54–58 (2011) [Google Scholar]
  3. A. Kowsar, S. F. U. Farhad, M. Rahaman, et al., Progress in major thin-film solar cells: Growth technologies, layer materials and efficiencies. International Journal of Renewable Energy Research (IJRER) 9, 579–597 (2019) [Google Scholar]
  4. G. Regmi, A. Ashok, P. Chawla, P. Semalti, S. Velumani, S. N. Sharma, H. Castaneda, Perspectives of chalcopyrite-based CIGSe thin-film solar cell: a review. Journal of Materials Science: Materials in Electronics 31, 7286–7314 (2020) [Google Scholar]
  5. Y. Xiao, Z. Xiong, M. Zhou, Device structure analysis of CIGS thin film solar cell. Electronic Components and Materials 11, 18–23 (2014) [Google Scholar]
  6. B. Wang, P. Liu, W. Li, F. Ma, X. Liu, X. Chen, Research progress on buffer layer materials of CIGS thin film solar cell. Materials Reports 19, 136–140 (2012) [Google Scholar]
  7. X. Huo, X. Mo, G. Chen, Deposition technologies of Cd-free buffer layers in solar cells made of copper indium gallium diselenide films. Chinese Journal of Vacuum Science and Technology 9, 834-840 (2012) [Google Scholar]
  8. U. Rau, H. W. Schock, Cu (In, Ga) Se2 solar cells. Clean electricity from photovoltaics, 277-345 (2001) [Google Scholar]
  9. S. Wagner, J. L. Shay, P. Migliorato, H. M. Kasper, CuInSe2/CdS heterojunction photovoltaic detectors. Applied Physics Letters 25, 434–435 (1974) [Google Scholar]
  10. L. L. Kazmerski, F. R. White, G. K. Morgan, Thin-film CuInSe2/CdS heterojunction solar cells. Applied Physics Letters 29, 268–270 (1976) [Google Scholar]
  11. R. A. Mickelsen, W. S. Chen, Development of a 9.4% efficient thin-film CuInSe2/CdS solar cell. 15th photovoltaic specialists conference, 800-804 (1981) [Google Scholar]
  12. B. M. Başol, V. K. Kapur, A. Halani, C. Leidholm, Copper indium diselenide thin film solar cells fabricated on flexible foil substrates. Solar Energy Materials and Solar Cells 29, 163–173 (1993) [Google Scholar]
  13. J. R. Tuttle, M. A. Contreras, T. J. Gillespie, et al., Accelerated publication 17.1% efficient Cu (In, Ga) Se2-based thin-film solar cell. Progress in Photovoltaics: Research and Applications 3, 235–238 (1995) [Google Scholar]
  14. B. M. Başol, V. K. Kapur, C. R. Leidholm, A. Halani, K. Gledhill, Flexible and light weight copper indium diselenide solar cells on polyimide substrates. Solar Energy Materials and Solar Cells 43, 93–98 (1996) [Google Scholar]
  15. M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon, R. Noufi, Progress toward 20% efficiency in Cu (In, Ga) Se2 polycrystalline thin-film solar cells. Progress in Photovoltaics: Research and applications 7, 311–316 (1999) [Google Scholar]
  16. I. Repins, M. Contreras, M. Romero, et al., Characterization of 19.9%-efficient CIGS absorbers. 2008 33rd IEEE Photovoltaic Specialists Conference, 1-6 (2008, May) [Google Scholar]
  17. S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, K. Matsubara, CIGS absorbers and processes. Progress in Photovoltaics: Research and Applications 18, 453–466 (2010) [Google Scholar]
  18. P. Reinhard, A. Chirilă, P. Blösch, F. Pianezzi, S. Nishiwaki, S. Buechelers, A. N. Tiwari, Review of progress toward 20% efficiency flexible CIGS solar cells and manufacturing issues of solar modules. 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2, 1-9 (2012, June) [Google Scholar]
  19. F. Pianezzi, A. Chirilă, P. Blösch, et al., Electronic properties of Cu (In, Ga) Se2 solar cells on stainless steel foils without diffusion barrier. Progress in Photovoltaics: Research and Applications 20, 253259 (2012) [Google Scholar]
  20. M. A. Green, K. Emery, Y. Hishikawa, et al., Solar cell efficiency tables (version 42). Progress in Photovoltaics: Research and Applications 5, 827–837 (2013) [Google Scholar]
  21. T. Kato, J. L. Wu, Y. Hirai, H. Sugimoto, V. Bermudez, Record efficiency for thin-film polycrystalline solar cells up to 22.9% achieved by Cs-treated Cu (In, Ga)(Se, S)2. IEEE Journal of Photovoltaics 9, 325–330 (2018) [Google Scholar]
  22. M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato, H. Sugimoto, Cd-free Cu (In, Ga)(Se, S)2 thin-film solar cell with record efficiency of 23.35%. IEEE Journal of Photovoltaics 9, 1863–1867 (2019) [Google Scholar]
  23. T. Satoh, Y. Hashimoto, S. I. Shimakawa, S. Hayashi, T. Negami, Cigs solar cells on flexible stainless steel substrates. Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference-2000, 567-570 (2000, September) [Google Scholar]
  24. R. Wuerz, A. Eicke, M. Frankenfeld, F. Kessler, M. Powalla, P. Rogin, O. Yazdani-Assl, CIGS thin-film solar cells on steel substrates. Thin Solid Films 517, 2415–2418 (2009) [Google Scholar]
  25. C. Y. Shi, Y. Sun, Q. He, F. Y. Li, J. C. Zhao, Cu (In, Ga) Se2 solar cells on stainless-steel substrates covered with ZnO diffusion barriers. Solar Energy Materials and Solar Cells 93, 654–656 (2009) [Google Scholar]
  26. H. Zachmann, S. Heinker, A. Braun, A. V. Mudryi, V. F. Gremenok, A. V. Ivaniukovich, M. V. Yakushev, Characterisation of Cu (In, Ga) Se2-based thin film solar cells on polyimide. Thin Solid Films 517, 2209–2212 (2009) [Google Scholar]
  27. A. Jäger-Waldau, PV status report 2017. https://publications.jrc.ec.europa.eu/repository/bitstream/JRC108105/kjna28817enn.pdf. (1975) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.