Open Access
Issue
E3S Web Conf.
Volume 267, 2021
7th International Conference on Energy Science and Chemical Engineering (ICESCE 2021)
Article Number 02048
Number of page(s) 5
Section Environmental Chemistry Research and Chemical Preparation Process
DOI https://doi.org/10.1051/e3sconf/202126702048
Published online 04 June 2021
  1. Enujekwu Francis M., Zhang Yue, Ezeh Collins I., Zhao Haitao, Xu Mengxia, Besley Elena, George Michael W., Besley Nicholas A., Do Hainam, Wu Tao. N-doping enabled defect-engineering of MoS2 for enhanced and selective adsorption of CO2: A DFT approach [J]. Applied Surface Science, 2021, 542. [Google Scholar]
  2. Hongxia W., Diana T., Jun Q., Fuyuan D., Dusan L. Supercapacitors: MoS2/Graphene Composites as Promising Materials for Energy Storage and Conversion Applications [J]. Advanced Materials Interfaces, 2019, 6. [Google Scholar]
  3. Kumar R., Dias W., Rubira R. J. G. et al. Simple and Fast Approach for Synthesis of Reduced Graphene Oxide–MoS2 Hybrids for Room Temperature Gas Detection [J]. IEEE Transactions on Electron Devices, 2018, 65(9): 3943-3949 [Google Scholar]
  4. Wu Z. S., Zhou G., Yin L. C. et al. Graphene/metal oxide composite electrode materials for energy storage [J]. Nano Energy, 2012, 1(1): 107-131. [Google Scholar]
  5. Ji L., Rao M., Zheng H. et al. Graphene Oxide as a Sulfur Immobilizer in High Performance Lithium/Sulfur Cells [J]. Journal of the American Chemical Society, 2011, 133 (46): 18522-18525. [CrossRef] [PubMed] [Google Scholar]
  6. Kanjun S., Kanjun S., Guohong Z., guangming M. Electrochemical behavior of phenol on glassy carbon electrode [J]. Gansu science and technology, 2014 (01): 23-25. [Google Scholar]
  7. Cao X., Shi Y., Shi W. et al. Preparation of MoS2-coated three-dimensional graphene networks for high-performance anode material in lithium-ion batteries [J]. small, 2013, 9 (20): 3433-3438. [CrossRef] [PubMed] [Google Scholar]
  8. Wang Z., Chen T., Chen W. et al. CTAB-assisted synthesis of single-layer MoS2-graphene composites as anode materials of Li-ion batteries [J]. Journal of Materials Chemistry A, 2013, 1 (6): 2202-2210. [Google Scholar]
  9. David L., Bhandavat R., Singh G. MoS2/graphene composite paper for sodium-ion battery electrodes [J]. ACS nano, 2014, 8 (2): 1759-1770. [CrossRef] [PubMed] [Google Scholar]
  10. Wang L. Preparation and electrochemical properties of graphene and its Composites [D]. 2015. [Google Scholar]
  11. Wanyu D., Liuyang L., Wenge L. Research progress and application of graphene/molybdenum disulfide Nanocomposites [J]. Modern chemical industry, 2018, (11): 2384-2387. [Google Scholar]
  12. Wang Z, Chen T, Chen W, et al. CTAB-assisted synthesis of single-layer MoS2-graphene composites as anode materials of Li-ion batteries [J]. Journal of Materials Chemistry A, 2013, 1 (6): 2202-2210. [Google Scholar]
  13. Chang K., Chen W. In situ synthesis of MoS2/ graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries [J]. Chemical Communications, 2011, 47 (14): 4252. [Google Scholar]
  14. Chang K., Chen W. l-Cysteine-Assisted Synthesis of Layered MoS2/Graphene Composites with Excellent Electrochemical Performances for Lithium Ion Batteries [J]. ACS Nano, 2011, 5 (6): 4720-4728. [CrossRef] [PubMed] [Google Scholar]
  15. Fu W., Du F. H., Su J. et al. In situ catalytic growth of large-area multilayered rGO/MoS2 hetero-structures [J]. Scientific Reports, 2014, 4 (4): 4673. [CrossRef] [PubMed] [Google Scholar]
  16. Li H., Yin Z., He Q. et al. Fabrication of Single-and Multilayer MoS2 Film-Based Field-Effect Transistors for Sensing NO at Room Temperature [J]. Small, 2012, 8 (1): 63-67. [CrossRef] [PubMed] [Google Scholar]
  17. Li X., Wang J., Xie D. et al. Flexible room-temperature formaldehyde sensors based on rGO film and rGo/MoS2 hybrid film [J]. Nanotechnology, 2017. [PubMed] [Google Scholar]
  18. Kanaujiya N., Anupam, Golimar K. et al. Investigating NO2 gas sensing behavior of flower-like MoS2 and rGO based nano-composite [J]. AIP Conference Proceedings. 2018, Vol. 1953 (No.1) [Google Scholar]
  19. Annadurai V., Rathi S., Lee I. Y. et al. Molybdenum disulfide nanoparticles decorated reduced graphene oxide: Highly sensitive and selective hydrogen sensor [J]. Nanotechnology, 2017, 28 (36): 1-20. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.