Open Access
Issue
E3S Web Conf.
Volume 268, 2021
2020 6th International Symposium on Vehicle Emission Supervision and Environment Protection (VESEP2020)
Article Number 01006
Number of page(s) 15
DOI https://doi.org/10.1051/e3sconf/202126801006
Published online 11 June 2021
  1. Ministry of Ecology and Environment of the People’s Republic of China. China Mobile Source Environmental Management Annual Report [M]; 2019 [Google Scholar]
  2. Li Mengliang; Li Jingyuan; Xu Yueyun; Research on the emissions and influencing factors of in-use vehicles [C]; Proceedings of the 14th Annual Meeting of the Lubricating Oil Branch; 2010 [Google Scholar]
  3. Ministry of Ecology and Environment. GB-17691-2018 Pollutant Emission Limits and Measurement Methods for Heavy-Duty Diesel Vehicles (China Sixth Stage) [S]; 2018-06-22. [Google Scholar]
  4. Pertti Taskinen. Modelling Medium Speed Diesel Engine Combustion, Soot and NOx-emission Formations[C] // SAE International, Paris, France, 2000, 2000-01-1886. [Google Scholar]
  5. Stefano d’Ambrosio, Roberto Finesso, Lezhong Fu. A control-oriented real-time semi-empirical model for the prediction of NOx emissions in diesel engines[J]. Applied Energy, 2014(130): 265–279. [CrossRef] [Google Scholar]
  6. Jonas Asprion, Oscar Chinellato, Lino Guzzella. A fast and accurate physics-based model for the NOx emissions of Diesel engines [J]. Applied Energy, 2013(103): 221–233. [CrossRef] [Google Scholar]
  7. Roberto Finesso, Ezio Spessa. A real time zero-dimensional diagnostic model for the calculation of in-cylinder temperatures, HRR and nitrogen oxides in diesel engines[J]. Energy Conversion and Management, 2014(79): 498–510. [CrossRef] [Google Scholar]
  8. Rahul Banerjee, Probir Bose. Development of a Neuro Genetic Algorithm Based Virtual Sensing Platform for the Simultaneous Prediction of NOx, Opacity and BSFC in a Diesel Engine Operated in Dual Fuel Mode with Hydrogen under Varying EGR Conditions[J]. SAE Int. Engines, 2012, 5(2): DOI: 10.4271/2011-01-2472. [Google Scholar]
  9. G. Anand, S. Gopinath, M. R. Ravi. Artificial Neural Networks for Prediction of Efficiency and NOx Emission of a Spark Ignition Engine [C]// SAE International, Detroit, Michigan, United States, 2006, 2006-01-1113. [Google Scholar]
  10. Li Nan, Tang Dong, Li Changyuan. Research on prediction of emission characteristics of diesel engine blended biodiesel based on BP neural network [J]. Automotive Engine, 2013(5): 48–56. [Google Scholar]
  11. Chang Yingjie, Lu Xianzhong, Wang Shilong. NOx emission model of EGR diesel engine based on PLS regression [J]. Journal of Internal Combustion Engine, 2012, 30(4): 322–329. [Google Scholar]
  12. Sun Fenglin. Research on nonlinear modeling and recursive algorithm of partial least squares regression method [D]. South China University of Technology, 2010. [Google Scholar]
  13. Hu Jie, Lin Feng, Wang Tiantian, et al. NOx emission prediction model of diesel engine based on neural network partial least squares method[J]. Journal of Internal Combustion Engine, 2015, v. 33; No. 162 (06): 34–39. [Google Scholar]
  14. Imran F., Yunfei Y. LSTM Algorithm for SCR Outlet NOx Based Prediction Model[J]. Kuwait Journal of ence, 2019, 46. [Google Scholar]
  15. Gers F. A., Schmidhuber, Jürgen, Cummins F. Learning to Forget: Continual Prediction with LSTM[J]. Neural Computation, 2000, 12(10): 2451–2471. [CrossRef] [PubMed] [Google Scholar]
  16. Soutner D., Ludëk Müller. Application of LSTM Neural Networks in Language Modelling[C]// International Conference on Text. Springer Berlin Heidelberg, 2013. [Google Scholar]
  17. Jonas Asprion, Oscar Chinellato, Lino Guzzella. Optimisation-oriented modelling of the NO x emissions of a Diesel engine[J]. Energy Conversion and Management, 2013(75): 61–73. [CrossRef] [Google Scholar]
  18. Wang Huiwen, Wu Zaibin, Meng Jie. Linear and nonlinear methods for partial least squares regression [M]. Beijing: National Defense Industry Press, 2006. [Google Scholar]
  19. Liang Lin. Research on soft sensor modeling method based on nonlinear partial least squares [D]. Tsinghua University, 2000. [Google Scholar]
  20. Roy P. P., Roy K. On some aspects of variable selection for partial least squares regression models[J]. QSAR and Combinatorial Science, 2008, 27(3): 302–313. [CrossRef] [Google Scholar]
  21. Hossein Abbasimehr et al., An optimized model using LSTM network for demand forecasting[J]. Computers & Industrial Engineering. 2020, (143). https://doi.org/10.1016/j.cie.2020.106435 [Google Scholar]
  22. Yi Lirong, Wang Shaoyu, Yin Lili et al. Industrial sensor time series data prediction based on multivariable LSTM [J]. Intelligent Computer and Application. 2018, vol. 8(5): 13–16. [Google Scholar]
  23. Liu Yijuan, Lei Ming, He Yang and others. Overview of artificial neural network [J]. Network and Information. 2015, (11): 74–75. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.