Open Access
E3S Web Conf.
Volume 268, 2021
2020 6th International Symposium on Vehicle Emission Supervision and Environment Protection (VESEP2020)
Article Number 01015
Number of page(s) 17
Published online 11 June 2021
  1. Theodoros GGM. Non-exhaust traffic related emissions. Brake and tyre wear PM [R]. Joint Researche Centre, 2014. [Google Scholar]
  2. Querol X., Alastuey A., Ruiz C.R., et al., Speciation and origin of PM10 and PM2.5 in selected European cities [J]. Atmospheric Environment,, 2004, 38: 6547–6555. [CrossRef] [Google Scholar]
  3. Bukowiecki N., Gehrig R., Lienemann P., et al., PM10 emission factors of abrasion particles from road traffic [J]. Swiss Fed. Dep. Environ. Transp. Energy Commun., 2009: 1–194. [Google Scholar]
  4. Amato F., Pandolfi M., Moreno T., et al., Sources and variability of inhalable road dust particles in three European cities [J]. Atmospheric Environment, 2011, 45: 6777–6787. [CrossRef] [Google Scholar]
  5. T. B. Briefing Paper on non-exhaust particulate emissions from road transport [R]. Transport Research Laboratory, 2014. [Google Scholar]
  6. Winkler S.L., Anderson J.E., Garza L., et al., Vehicle criteria pollutant (PM, NOx, CO, HCs) emissions: how low should we go? [J]. npj Climate and Atmospheric Science, 2018, 1. [Google Scholar]
  7. van der Denier Gon H., Gerlofs-Nijland M., Gehrig R., et al., The Policy Relevance of Wear Emissions from Road Transport, Now and in the FutureAn International Workshop Report and Consensus Statement [J]. Journal of the Air & Waste Management Association (1995),, 2013, 63: 136–149. [CrossRef] [PubMed] [Google Scholar]
  8. Van der Denier Gon H., Jozwicka, M., Cassee, F., et al., The policy relevance of wear emissions from road transport. now and in the future [R]. T. Report, TNO-060-UT-2012-00732, 2012. [Google Scholar]
  9. Gavett S.H., Haykal-Coates, N., Copeland, L. B., et al., Metal composition of ambient PM2. 5 influences severity of allergic airways disease in mice [J]. Environmental Health Perspectives,, 2003, 111: 1471–1477. [Google Scholar]
  10. Zhou P.G.J., Zhou, X. Y., et al., PM2.5, PM10 and health risk assessment of heavy metals in a typical printed circuit noards manufacturing workshop [J]. Journal of Environmental Sciences,, 2014, 26: 2018–2026. [CrossRef] [Google Scholar]
  11. James J.S.G.C.L., Martin M.S., et al., Characterization of metals emitted from motor vehicles [R]. H.E. Institute, 2006. [Google Scholar]
  12. Iijima A., Sato K., Yano K., et al., Particle size and composition distribution analysis of automotive brake abrasion dusts for the evaluation of antimony sources of airborne particulate matter [J]. Atmospheric Environment,, 2007, 41: 4908–4919. [CrossRef] [Google Scholar]
  13. Riediker M., Gasser, M., Perrenoud, A., et al., A system to test the toxicity of brake wear particles [C]// 12th International ETH-Conference on Combustion Generated Nanoparticles. Zurich, Switzerland: 2008. [Google Scholar]
  14. Kukutschovâ J., Moravec P., Tomâsek V., et al., On airborne nano/micro-sized wear particles released from low-metallic automotive brakes [J]. Environmental Pollution,, 2011, 159: 998–1006. [CrossRef] [Google Scholar]
  15. Garg B.D., Cadle S.H., Mulawa P.A., et al., Brake Wear Particulate Matter Emissions [J]. Environmental Science & Technology 2000, 34: 4463–4469. [CrossRef] [Google Scholar]
  16. Sanders P.G., Xu N., Dalka T.M., et al., Airborne Brake Wear Debris: Size Distributions, Composition, and a Comparison of Dynamometer and Vehicle Tests [J]. Environmental Science & Technology,, 2003, 37: 4060–4069. [CrossRef] [PubMed] [Google Scholar]
  17. Iijima A., Sato K., Yano K., et al., Emission Factor for Antimony in Brake Abrasion Dusts as One of the Major Atmospheric Antimony Sources [J]. Environmental Science & Technology,, 2008, 42: 2937–2942. [CrossRef] [PubMed] [Google Scholar]
  18. Wahlström J., Olander, L. and Olofsson, U. Size, shape, and elemental composition of airborne wear particles from disc brake materials [J]. Tribology Letters, 2010, 38: 1524. [Google Scholar]
  19. Mosleh M., Blau P.J., Dumitrescu D. Characteristics and morphology of wear particles from laboratory testing of disk brake materials [J]. Wear, 2004, 256: 1128–1134. [CrossRef] [Google Scholar]
  20. Mathissen M., Grochowicz J., Schmidt C., et al., A novel real-world braking cycle for studying brake wear particle emissions [J]. Wear, 2018, 414-415: 219–226. [CrossRef] [Google Scholar]
  21. Fauser P. Particulate Air Pollution with Emphasis on Traffic Generated Aerosols [D]. Roskilde: Technical University of Denmark, Riso National Laboratory, 1999. [Google Scholar]
  22. Boulter P.G. A review of emission factors and models for road vehicle non-exhaust particulate matter [R]. Wokingham, TRL Limited, 2006. [Google Scholar]
  23. Gualtieri M., Mantecca P., Cetta F., et al., Organic compounds in tire particle induce reactive oxygen species and heat-shock proteins in the human alveolar cell line A549 [J]. Environment International,, 2008, 34: 437–442. [CrossRef] [PubMed] [Google Scholar]
  24. Barlow T.J., Boulter, P.G., McCrae, I.S., et al., Non-exhaust particulate matter emissions from road traffic: Summary report [R]. Scottish Executive, Welsh Assembly Government, 2007. [Google Scholar]
  25. Kreider M.L., Panko J.M., McAtee B.L., et al., Physical and chemical characterization of tire-related particles: Comparison of particles generated using different methodologies [J]. Science of The Total Environment,, 2010, 408: 652–659. [CrossRef] [Google Scholar]
  26. Smolders E., Degryse F. Fate and Effect of Zinc from Tire Debris in Soil [J]. Environmental Science & Technology, 2002, 36: 3706–3710. [CrossRef] [PubMed] [Google Scholar]
  27. Gustafsson M., Blomqvist G., Gudmundsson A., et al., Properties and toxicological effects of particles from the interaction between tyres, road pavement and winter traction material [J]. Science of The Total Environment,, 2008, 393: 226–240. [CrossRef] [Google Scholar]
  28. Kupiainen K.J., Tervahattu H., Räisänen M., et al., Size and Composition of Airborne Particles from Pavement Wear, Tires, and Traction Sanding [J]. Environmental Science & Technology,, 2005, 39: 699–706. [CrossRef] [PubMed] [Google Scholar]
  29. Dahl A., Gharibi A., Swietlicki E., et al., Traffic-generated emissions of ultrafine particles from pavement-tire interface [J]. Atmospheric Environment, 2006, 40: 13141323. [CrossRef] [Google Scholar]
  30. Sjödin A., Ferm, M., Björk, A., et al., Wear Particles from Road Traffic: A Field, Laboratory and Modelling Study [R]. Göteborg, IVL Swedish Environmental Research Institute Ltd, 2010. [Google Scholar]
  31. Lawrence S., Sokhi R., Ravindra K. Quantification of vehicle fleet PM10 particulate matter emission factors from exhaust and non-exhaust sources using tunnel measurement techniques [J]. Environ Pollut, 2016, 210: 419–428. [CrossRef] [PubMed] [Google Scholar]
  32. Li F., Zhang Y., Jing Zhang, et al., Characteristics of Particulate and Inorganic Elements of Motor Vehicles Based on a Tunnel Environment [J]. Environmental Science,, 2015, 39: 1014–1022. [Google Scholar]
  33. Lawrence S., Sokhi R., Ravindra K., et al., Source apportionment of traffic emissions of particulate matter using tunnel measurements [J]. Atmospheric Environment,, 2013, 77: 548–557. [CrossRef] [Google Scholar]
  34. Hung-Lung C., Yao-Sheng, H. Particulate matter emissions from on-road vehicles in a freeway tunnel study [J]. Atmospheric Environment, 2009, 43: 4014–4022. [CrossRef] [Google Scholar]
  35. Kumar P., Pirjola L., Ketzel M., et al., Nanoparticle emissions from 11 non-vehicle exhaust sources - A review [J]. Atmospheric Environment,, 2013, 67: 252–277. [CrossRef] [Google Scholar]
  36. Dall’Osto M., Beddows, D. C. S., Gietl, J. K., et al., Characteristics of tyre dust in polluted air: Studies by single particle mass spectrometry (ATOFMS) [J]. Atmospheric Environment,, 2014, 94: 224–230. [CrossRef] [Google Scholar]
  37. Pirjola L., Parviainen H., Hussein T., et al., “Sniffer”—a novel tool for chasing vehicles and measuring traffic pollutants [J]. Atmospheric Environment, 2004, 38: 3625–3635. [CrossRef] [Google Scholar]
  38. Pirjola L., Kupiainen K.J., Perhoniemi P., et al., Non-exhaust emission measurement system of the mobile laboratory SNIFFER [J]. Atmospheric Environment,, 2009, 43: 4703–4713. [CrossRef] [Google Scholar]
  39. Lee S., Kwak, J., Kim, H., et al., Properties of roadway particles from interaction between the tire and road pavement [J]. International Journal of Automotive Technology,, 2013, 14: 163–173. [CrossRef] [Google Scholar]
  40. Kupiainen K.J., Pirjola L. Vehicle non-exhaust emissions from the tyre-road interface - effect of stud properties, traction sanding and resuspension [J]. Atmospheric Environment, 2011, 45: 4141–4146. [CrossRef] [Google Scholar]
  41. Hussein T., Johansson, C., Karlsson, H., et al., Factors affecting non-tailpipe aerosol particle emissions from paved roads: On-road measurements in Stockholm, Sweden [J]. Atmospheric Environment,, 2008, 42: 688–702. [CrossRef] [Google Scholar]
  42. Mathissen M., Scheer, V., Vogt, R., et al., Investigation on the potential generation of ultrafine particles from the tire-road interface [J]. Atmospheric Environment,, 2011, 45: 6172–6179. [CrossRef] [Google Scholar]
  43. Farwickzum Hagen F.H., Mathissen, M., Grabiec, T., et al., On-road vehicle measurements of brake wear particle emissions [J]. Atmospheric Environment, 2019, 217: 116–943. [Google Scholar]
  44. zum Hagen F.H.F., Mathissen M., Grabiec T., et al., Study of Brake Wear Particle Emissions: Impact of Braking and Cruising Conditions [J]. Environmental Science & Technology,, 2019, 53: 5143–5150. [CrossRef] [PubMed] [Google Scholar]
  45. Perricone G., Alemani M., Metinöz I., et al., Towards the ranking of airborne particle emissions from car brakes - a system approach [J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering,, 2016, 231: 781–797. [CrossRef] [Google Scholar]
  46. Thorpe A.J., Harrison R.M., Boulter P.G., et al., Estimation of particle resuspension source strength on a major London Road [J]. Atmospheric Environment, 2007, 41: 8007–8020. [CrossRef] [Google Scholar]
  47. Gietl J.K., Lawrence R., Thorpe A.J., et al., Identification of brake wear particles and derivation of a quantitative tracer for brake dust at a major road [J]. Atmospheric Environment,, 2010, 44: 141–146. [CrossRef] [Google Scholar]
  48. Bukowiecki N., Lienemann P., Hill M., et al., Real-World Emission Factors for Antimony and Other Brake Wear Related Trace Elements: Size-Segregated Values for Light and Heavy Duty Vehicles [J]. Environmental Science & Technology,, 2009, 43: 8072–8078. [CrossRef] [PubMed] [Google Scholar]
  49. Franco V., Kousoulidou M., Muntean M., et al., Road vehicle emission factors development: A review [J]. Atmospheric Environment,, 2013, 70: 84–97. [CrossRef] [Google Scholar]
  50. Theodoros Grigoratos G.M. Non-exhaust traffic related emissions. Brake and tyre wear PM [R]. European Commission, Joint Research Centre, Institute of Energy and Transport, 2014. [Google Scholar]
  51. Pant P., Harrison R.M. Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review [J]. Atmospheric Environment, 2013, 77: 78–97. [CrossRef] [Google Scholar]
  52. Adachi K., Tainosho Y. Characterization of heavy metal particles embedded in tire dust [J]. Environment International, 2004, 30: 1009–1017. [Google Scholar]
  53. Schauer L.G., Shafer M.M., et al., Characterization of metals emitted from motor vehicles [R]. Health Effects Institute, 2006. [Google Scholar]
  54. Tanner P.A., Ma H.-L., Yu P.K.N. Fingerprinting Metals in Urban Street Dust of Beijing, Shanghai, and Hong Kong [J]. Environmental Science & Technology, 2008, 42: 7111–7117. [CrossRef] [PubMed] [Google Scholar]
  55. Apeagyei E., Bank M.S., Spengler J.D. Distribution of heavy metals in road dust along an urban-rural gradient in Massachusetts [J]. Atmospheric Environment, 2011, 45: 2310–2323. [CrossRef] [Google Scholar]
  56. Harrison R.M. Airborne particulate matter from road traffic: current status of knowledge and research challenges [C]// 17th Transport and Air Pollution Symposium e 3rd Environment and Transport Symposium. 2009. [Google Scholar]
  57. Duong T.T.T., Lee B.-K. Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics [J]. Journal of Environmental Management, 2011, 92: 554–562. [CrossRef] [PubMed] [Google Scholar]
  58. Dongarrà G., Manno E., Varrica D. Possible markers of traffic-related emissions [J]. Environmental Monitoring and Assessment, 2008, 154: 117. [CrossRef] [PubMed] [Google Scholar]
  59. Song F., Gao Y. Size distributions of trace elements associated with ambient particular matter in the affinity of a major highway in the New Jersey-New York metropolitan area [J]. Atmospheric Environment, 2011, 45: 6714–6723. [CrossRef] [Google Scholar]
  60. Keuken M., Van der Denier Gon H., van der Valk K. Non-exhaust emissions of PM and the efficiency of emission reduction by road sweeping and washing in the Netherlands [J]. Science of The Total Environment, 2010, 408: 4591–4599. [CrossRef] [Google Scholar]
  61. Harrison R.M., Jones A.M., Gietl J., et al., Estimation of the Contributions of Brake Dust, Tire Wear, and Resuspension to Nonexhaust Traffic Particles Derived from Atmospheric Measurements [J]. Environmental Science & Technology, 2012, 46: 6523–6529. [Google Scholar]
  62. Lükewille A.B.I., Amann M., et al., A framework to estimate the potential and costs for the control of fine particulate emissions in Europe [J]. 2001, IR-01-023. [Google Scholar]
  63. Luhana L., Sokhi, R., Warner, L., et al., Characterisation of Exhaust Particulate Emissions from Road Vehicles [R]. 2004. [Google Scholar]
  64. NAEI. Road transport emission factors from 2010 NAEI [D]., 2012. [Google Scholar]
  65. Abu-Allaban M., Gillies J.A., Gertler A.W., et al., Tailpipe, resuspended road dust, and brake-wear emission factors from on-road vehicles [J]. Atmospheric Environment,, 2003, 37: 5283–5293. [CrossRef] [Google Scholar]
  66. Rauterberg-Wulff A. Determination of emission factors for tyre wear particles up to 10 um by tunnel measurements [C]// Proceedings of 8th International Symposium ‘Transport and Air Pollution’. Graz, Austria: 1999. [Google Scholar]
  67. Milani M., Pucillo F.P., Ballerini M., et al., First evidence of tyre debris characterization at the nanoscale by focused ion beam [J]. Materials Characterization,, 2004, 52: 283–288. [CrossRef] [Google Scholar]
  68. Panko J.M., Chu J., Kreider M.L., et al., Measurement of airborne concentrations of tire and road wear particles in urban and rural areas of France, Japan, and the United States [J]. Atmospheric Environment,, 2013, 72: 192–199. [CrossRef] [Google Scholar]
  69. Rogge W.F., Hildemann L.M., Mazurek M.A., et al., Sources of fine organic aerosol. 3. Road dust, tire debris, and organometallic brake lining dust: roads as sources and sinks [J]. Environmental Science & Technology,, 1993, 27: 1892–1904. [Google Scholar]
  70. Keuken M., Teeuwisse, S., Ten Brink, H.M. Research on the contribution of road dust emissions to PM10 concentrations in the Netherlands [R]. Apeldoorn, The Netherlands, TNO-MEP, 1999. [Google Scholar]
  71. Hüeglin C., Gehrig, R. Contributions of Road Traffic to Ambient PM10 and PM2.5 Concentrations - Chemical Speciation of Fine Particulates and Source Attribution with a Receptor Model [R]. Dübendorf Swiss Federal Laboratories for Materials Testing and Research (EMPA), 2000. [Google Scholar]
  72. Ten Broeke H., Hulskotte, J., Denier van der Gon, H. Road traffic tyre wear [R]. Netherlands national water board -water unit, 2008. [Google Scholar]
  73. CEPMEIP. Cepmeip database [D]. (retrieved 31.01.14), 2012. [Google Scholar]
  74. Timmers V.R.J.H., Achten P.A.J. Non-exhaust PM emissions from electric vehicles [J]. Atmospheric Environment, 2016, 134: 10–17. [CrossRef] [Google Scholar]
  75. A S Road transport: new life cycle inventories for fossil-fuelled passenger cars and non-exhaust emissions in ecoinvent v3 [J]. Int. J. Life Cycle Assess, 2013: 1–15. [Google Scholar]
  76. Yanzhao Hao, Shunxi Deng, Zhaowen Qiu, et al., Particle sources and characteristics of light duty vehicle based on MOVES model [J]. Chinese Journal of Environmental Engineering,, 2015, 9: 3915–3922. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.