Open Access
Issue
E3S Web Conf.
Volume 268, 2021
2020 6th International Symposium on Vehicle Emission Supervision and Environment Protection (VESEP2020)
Article Number 01021
Number of page(s) 34
DOI https://doi.org/10.1051/e3sconf/202126801021
Published online 11 June 2021
  1. Squaiella L.F., Martins, C.A., Lacava P.T. Strategies for emission control in diesel engine to meet Euro VI. Fuel 2013; 104:183–193. https://doi.org/10.1016Zj.tuel.2012.07.027. [CrossRef] [Google Scholar]
  2. Tamilselvan P., Nallusamy N., Rajkumar S. A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines. Renewable and Sustainable Energy Reviews 2017;79:1134–1159. https://doi.org/10.1016/j.rser.2017.05.176. [CrossRef] [Google Scholar]
  3. Kittelson D.B. Engines and nanoparticles: a review. Journal of Aerosol Science 1998;29(5-6):575–588. https://doi.org/10.1016/S0021-8502(97)10037-4. [CrossRef] [Google Scholar]
  4. Koltsakis G., Konstantinou A., Haralampous O., Samaras Z. Measurement and intra-layer modeling of soot density and permeability in wall-flow filters. SAE International 2006. https://doi.org/10.4271/2006-01-0261. [Google Scholar]
  5. Bensaid S., Marchisio D.L. Modelling of diesel particulate filtration in wall-flow traps. Chemical Engineering Journal 2009;154(1-3):211–218. https://doi.org/10.1016/j.cej.2009.03.043. [CrossRef] [Google Scholar]
  6. Johnson T. Vehicular emissions in review. SAE International 2014. https://doi.org/10.4271/2014-01-1491 [Google Scholar]
  7. Li C., Mao F., Zhan R., Eakle S. Durability performance of advanced ceramic material DPFs. SAE International 2007. https://doi.org/10.4271/2007-01-0918. [Google Scholar]
  8. Federica D'Aniello, Rossomando, B., Arsie, I., Pianese, C. Development and experimental validation of a control oriented model of a catalytic DPF. SAE International 2019. https://doi.org/10.4271/2019-01-0985. [Google Scholar]
  9. Guan B., Zhan R., Lin H., Huang Z. Review of the state-of-the-art of exhaust particulate filter technology in internal combustion engines. Journal of Environmental Management 2015;154:225–258. https://doi.org/10.1016/jjenvman.2015.02.027. [CrossRef] [PubMed] [Google Scholar]
  10. Iwasaki S., Mizutani T., Miyairi Y., Yuuki K., Makino M. New design concept for diesel particulate filter. SAE International 2011. https://doi.org/10.4271/2011-01-0603. [Google Scholar]
  11. Adler J. Ceramic diesel particulate filters. International Journal of Applied Ceramic Technology 2005;2(6):429–439. https://doi.org/10.1111/j.1744-7402.2005.02044.x. [CrossRef] [Google Scholar]
  12. Mokhri M., Abdullah N.R., Abdullah S.A., Kasalong S., Mamat R. Soot filtration recent simulation analysis in diesel particulate filter (DPF). Procedia Engineering 2012;41:1750–1755. https://doi.org/10.1016j.proeng.2012.07.378. [CrossRef] [Google Scholar]
  13. Ohara E., Mizuno Y., Miyairi Y. Filtration Behavior of Diesel Particulate Filters. SAE International 2007. https://doi.org/10.4271/2007-01-0921. [Google Scholar]
  14. Serrano J.R., Arnau F.J., Piqueras P. Packed bed of spherical particles approach for pressure drop prediction in wall-flow DPFs (diesel particulate filters) under soot loading conditions. Energy 2013;58:644–654. https://doi.org/10.1016j.energy.2013.05.051. [CrossRef] [Google Scholar]
  15. Davis C.N. Air Filtration. Academic Press. Orlando, FL; 1973. [Google Scholar]
  16. Orihuela M., Gomez-Martin A., Miceli P. Experimental measurement of the filtration efficiency and pressure drop of wall-flow diesel particulate filters (DPF) made of biomorphic Silicon Carbide using laboratory generated particles. Applied Thermal Engineering 2018;131:41–53. https://doi.org/10.1016j.applthermaleng.2017.11.149. [CrossRef] [Google Scholar]
  17. Mikulic I., Zhan R., Eakle S. Dependence of fuel consumption on engine backpressure generated by a DPF. SAE International 2010. https://doi.org/10.4271/2010-01-0535. [Google Scholar]
  18. Aravelli K., Heibel A. Improved lifetime pressure drop management for robust cordierite (RC) filters with Asymmetric Cell Technology (ACT). SAE International 2007. https://doi.org/10.4271/2007-01-0920. [Google Scholar]
  19. Heibel A., Bhargava R. Advanced diesel particulate filter design for lifetime pressure drop solution in light duty applications. SAE International 2007. https://doi.org/10.4271/2007-01-0042. [Google Scholar]
  20. Bardon S., Bouteiller B., Bonnail N. Asymmetrical channels to increase DPF Lifetime. SAE International 2004. https://doi.org/10.4271/2004-01-0950. [Google Scholar]
  21. Briot A., Carranza F., Girot P., Bardon S. Minimizing filter volume by design optimization. SAE International 2007. https://doi.org/10.4271/2007-01-0657. [Google Scholar]
  22. Gardner T., Yetkin A., Shotwell R. Evaluation of a DPF regeneration system and DOC performance using secondary fuel injection. SAE International 2009. https://doi.org/10.4271/2009-01-2884. [Google Scholar]
  23. Yu M., Luss D., Balakotaiah V. Regeneration modes and peak temperatures in a diesel particulate filter. Chemical Engineering Journal 2013;232:541–554. https://doi.org/10.1016j.cej.2013.08.006. [CrossRef] [Google Scholar]
  24. Wang D., Liu Z., Han Y. Experimental study on pressure drop performance and regeneration safety of diesel particulate filter. ICEICE 2011, Wuhan, China; 2011. [Google Scholar]
  25. Athanasios G. Konstandopoulos. Fundamental studies of diesel particulate filters: transient loading, regeneration and aging. SAE International 2000. https://doi.org/10.4271/2000-01-1016. [Google Scholar]
  26. Ogyu K., Yamakawa T., Ishii Y. Soot loading estimation accuracy improvement by filtration layer forming on DPF and new algorithm of pressure loss measurement. SAE International 2013. https://doi.org/10.4271/2013-01-0525. [Google Scholar]
  27. Oliveira L.M., Savvidis D., Sr M.P. Controlling particulate matter emissions in vehicles using different strategies under the heavy-duty test cycle. SAE International 2012. https://doi.org/10.4271/2012-01-0885. [Google Scholar]
  28. Chen X., Kumar A., Klippstein D., Stafford R., Su C.S., Yuan Y., Zokoe J., McGinn P. Development and demonstration of a soot generator integrated bench reactor. SAE International 2014. https://doi.org/10.4271/2014-01-1589. [Google Scholar]
  29. Konstandopoulos A. Flow resistance descriptors for diesel particulate filters: definitions, measurements and testing. SAE International 2003. https://doi.org/10.4271/2003-01-0846. [Google Scholar]
  30. Deng Y. Investigations on the temperature distribution of the diesel particulate filter in the thermal regeneration process and its field synergy analysis. Applied Thermal Engineering 2017;123:92–102. https://doi.org/10.1016/j.applthermaleng.2017.05.072. [CrossRef] [Google Scholar]
  31. Evdoxia A. Kladopoulou, Yang S. A study describing the performance of diesel particulate filters during loading and regeneration-a lumped parameter model for control applications. SAE International 2003. https://doi.org/10.4271/2003-01-0842. [Google Scholar]
  32. Masoudi M., Athanasios, G. Konstandopoulos. Validation of a model and development of a simulator for predicting the pressure drop of diesel particulate filters. SAE International 2001. https://doi.org/10.4271/2001-01-0911. [Google Scholar]
  33. Masoudi M., Heibel A., Paul M. Then. Predicting pressure drop of wall-flow diesel particulate filters--theory and experiment. SAE International 2000. https://doi.org/10.4271/2000-01-0184. [Google Scholar]
  34. Choi S., Kyeong L. Detailed investigation of soot deposition and oxidation characteristics in a diesel particulate filter using optical visualization. SAE International 2013. https://doi.org/10.4271/2013-01-0528. [Google Scholar]
  35. Rayomand H. Dabhoiwala, John H. Johnson, Jeffrey D. Naber, Susan T. Bagley. A methodology to estimate the mass of particulate matter retained in a catalyzed particulate filter as applied to active regeneration and on-board diagnostics to detect filter failures. SAE International 2008. https://doi.org/10.4271/2008-01-0764. [Google Scholar]
  36. Ohyama N., Nakanishi T., Daido S. New concept catalyzed DPF for estimating soot loadings from pressure drop. SAE International 2008. https://doi.org/10.4271/2008-01-0620. [Google Scholar]
  37. Singh N., Mandarapu S. DPF soot estimation challenges and mitigation strategies and assessment of available DPF technologies. SAE International 2013. https://doi.org/10.4271/2013-01-0838. [Google Scholar]
  38. Meng Z., Chen C., Li J. Particle emission characteristics of DPF regeneration from DPF regeneration bench and diesel engine bench measurements. Fuel 2020;262. https://doi.org/10.1016/jfuel.2019.116589. [Google Scholar]
  39. Bermúdez V., Serrano J.R., Piqueras P., Sanchis E.J. On the impact of particulate matter distribution on pressure drop of wall-flow particulate filters. Applied Sciences 2017;7(3):234. https://doi.org/10.3390/app7030234. [CrossRef] [Google Scholar]
  40. Bermúdez V., Serrano J.R., Piqueras P., García-Afonso O. Pre-DPF water injection technique for pressure drop in loaded wall-flow diesel particulate filters. Applied Energy 2015;140:234–245. https://doi.org/10.1016Zj.apenergy.2014.12.003. [CrossRef] [Google Scholar]
  41. Wang H., Ge Y.T.J. Ash deposited in diesel particular filter: a review. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 2019;41(18):2184–2193. https://doi.org/10.1080/15567036.2018.1550539. [CrossRef] [Google Scholar]
  42. Fang J., Meng Z., Li J. The influence of ash on soot deposition and regeneration processes in diesel particular filter. Applied Thermal Engineering 2017;124:633–640. https://doi.org/10.1016/j.applthermaleng.2017.06.076. [CrossRef] [Google Scholar]
  43. Gao Y., Liu H., Chen W., Fu T., Fang M., Li J., Research on soot filtration and pressure drop characteristics of DPF. Proceedings of SAE-China Congress 2016: Selected Papers, Shanghai, China; 2016. https://doi.org/10.1007/978-981-10-3527-2_6. [Google Scholar]
  44. Zhu, Y. Numerical simulation of pressure-drop and soot particle accumulation performance of a diesel engine DPF. Transactions of CSICE (Chinese Society for Internal Combustion Engines) 2017;35(6):538–547. https://doi.org/10.16236/j.cnki.nrjxb.201706075. [Google Scholar]
  45. Haralampous O., Kontzias T. Approximate pressure drop and filtration efficiency expressions for semi-open wall-flow channels. Canadian Journal of Chemical Engineering 2014;92(9):1517–1525. https://doi.org/10.1002/cjce.21982. [CrossRef] [Google Scholar]
  46. Depcik C., Spickler B., Gaire A. Revisiting the single equation pressure drop model for particulate filters. SAE International 2018. https://doi.org/10.4271/2018-01-0952. [Google Scholar]
  47. Edward J. Bissett. Mathematical model of the thermal regeneration of a wall-flow monolith diesel particulate filter. Chemical Engineering Science 1984;39(7-8):1233–1244. https://doi.org/10.1016/0009-2509(84)85084-8. [CrossRef] [Google Scholar]
  48. Athanasios G. Konstandopoulos, John H. Johnson. Wall-flow diesel particulate filters—their pressure drop and collection efficiency. SAE International 1989. https://doi.org/10.4271/890405. [Google Scholar]
  49. Cornelius N. Opris, John H. Johnson. A 2-D computational model describing the flow and filtration characteristics of a ceramic diesel particulate trap. SAE International 1998. https://doi.org/10.4271/980545. [Google Scholar]
  50. Suresh A., Khan A., John H. Johnson. An experimental and modeling study of cordierite traps - pressure drop and permeability of clean and particulate loaded traps. SAE International 2000. https://doi.org/10.4271/2000-01-0476. [Google Scholar]
  51. Hashimoto S., Miyairi Y., Hamanaka T., Matsubara R., Harada T., Miwa S. SiC and cordierite diesel particulate filters designed for low pressure drop and catalyzed, uncatalyzed systems. SAE International 2002. https://doi.org/10.4271/2002-01-0322. [Google Scholar]
  52. Gaiser G., Mucha P. Prediction of pressure drop in diesel particulate filters considering ash deposit and partial regenerations. SAE International 2004. https://doi.org/10.4271/2004-01-0158. [Google Scholar]
  53. Du Y., Hu G., Xiang S., Zhang K., Liu H., Guo F. Estimation of the diesel particulate filter soot load based on an equivalent circuit model. Energies 2018;11(2):472. https://doi.org/10.3390/en11020472. [CrossRef] [Google Scholar]
  54. Kim Y.W., Nieuwstadt M.V., Stewart G., Pekar J. Model predictive control of DOC temperature during DPF regeneration. SAE International 2014. https://doi.org/10.4271/2014-01-1165. [Google Scholar]
  55. Neri G., Bonaccorsi L., Donato A., Milone C., Musolino M.G., Visco A.M. Catalytic combustion of diesel soot over metal oxide catalysts. Applied Catalysis B: Environmental 1997;11(2):217–231. https://doi.org/10.1002/chin.199718022. [CrossRef] [Google Scholar]
  56. Neeft J., Nijhuis T.X., Smakman E., Makkee M., Moulijn J.A. Kinetics of the oxidation of diesel soot. Fuel 1997;76:1129–1136. https://doi.org/10.1016/S0016-2361(97)00119-1. [CrossRef] [Google Scholar]
  57. Konstandopoulos A.G., Kostoglou M. Reciprocating flow regeneration of soot filters. Combustion and Flame 2000;121:488–500. https://doi.org/10.1016/S0010-2180(99)00156-X. [CrossRef] [Google Scholar]
  58. Stanmore B.R., Tschamber V., Brilhac J.F. Oxidation of carbon by NOx, with particular reference to NO2 and N2O. Fuel 2008;87:131–146. https://doi.org/10.1016/j.fuel.2007.04.012. [CrossRef] [Google Scholar]
  59. Rose D., Boger T. Different approaches to soot estimation as key requirement for DPF applications. SAE International 2009. https://doi.org/10.4271/2009-01-1262. [Google Scholar]
  60. Konstantinos Boulouchos. A phenomenological mean value soot model for transient engine operation. MTZ Worldwide 2008;69(7-8):58–65. https://doi.org/10.1007/BF03227906. [CrossRef] [Google Scholar]
  61. Tang J., Li G., Wang Z. Construction and experiment of DPF soot loading model. Transactions of CSICE (Chinese Society for Internal Combustion Engines) 2015;33(1):51–57. https://doi.org/10.16236Zj.cnki.nrjxb.201501008. [Google Scholar]
  62. Bai S., Tang J., Wang G., Li G. Soot loading estimation model and passive regeneration characteristics of DPF system for heavy-duty engine. Applied Thermal Engineering 2016;100:1292–1298. https://doi.org/10.1016/j.applthermaleng.2016.02.055. [CrossRef] [Google Scholar]
  63. Huang T., Zhu Y., Ran Y. Calibration of a mass balance based soot load estimation model for diesel particulate filter. IFAC-Papers OnLine 2018;51(31):362–365. https://doi.org/10.1016/j.ifacol.2018.10.074. [CrossRef] [Google Scholar]
  64. Giacomo Falcucci. A lumped parameter model for diesel soot morphology evaluation and emission control. Proceedings of the Institution of Mechanical Engineers. Part D: Journal of Automobile Engineering 2012;226(D7):987–998. https://doi.org/10.1177/0954407011434251. [CrossRef] [Google Scholar]
  65. Hoepfner A., Roduner C.A. PM sensor based on-board diagnosis of particulate filter efficiency. SAE International 2013. https://doi.org/10.4271/2013-01-1515. [Google Scholar]
  66. Ragaller P., Sappol A., Bromberg L. Particulate filter soot load measurements using radio frequency sensors and potential for improved filter management. SAE International 2016. https://doi.org/10.4271/2016-01-0943. [Google Scholar]
  67. Huq R., Anwar S. An electrical capacitance based measurement method for soot load estimation in a diesel particulate filter. IFAC Proceedings Volumes 2014;47(3):8463–8468. https://doi.org/10.3182/20140824-6-ZA-1003.00920. [Google Scholar]
  68. Husted H., Roth G., Nelson S., Hocken L., Fulks G., Racine D. Sensing of particulate matter for onboard diagnosis of particulate filters. SAE International 2012. https://doi.org/10.4271/2012-01-0372. [Google Scholar]
  69. Xiong R., Sun F., Chen Z. He, H. A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion olymer battery in electric vehicles. Applied Energy 2014;113:463–476. https://doi.org/10.1016/j.apenergy.2013.07.061. [CrossRef] [Google Scholar]
  70. Domínguez-Sáez A., Rattá G., Barrios C. Prediction of exhaust emission in transient conditions of a diesel engine fueled with animal fat using Artificial Neural Network and Symbolic Regression. Applied Energy 2018;149:675–683. https://doi.org/10.1016/j.energy.2018.02.080. [CrossRef] [Google Scholar]
  71. Dharma S., Hassan H.M., Ong C.H. Experimental study and prediction of the performance and exhaust emissions of mixed Jatropha curcas-Ceiba pentandra biodiesel blends in diesel engine using artificial neural networks. Journal of Cleaner Production 2017;164:618–633. https://doi.org/10.1016/jjclepro.2017.06.065. [CrossRef] [Google Scholar]
  72. Rahimimolkdaragh, R., Jafarmadar, S., Khalilaria, H. Prediction of the performance and exhaust emissions of a compression ignition engine using a wavelet neural network with a stochastic gradient algorithm. Energy 2018;142:1128–1138. https://doi.org/10.1016/j.energy.2017.09.006. [CrossRef] [Google Scholar]
  73. Nelson S.A., Filipi Z.S., Assanis D.N. The use of neural nets for matching fixed or variable geometry compressors with diesel engines. Journal of Engineering for Gas Turbines and Power 2003;125(2):572–579. https://doi.org/10.1115/L1563239. [CrossRef] [Google Scholar]
  74. Deng J., Bastian M., Stobart R. Particulate matter prediction in both steady state and transient operation of diesel engines. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering 2012;226(2):260–274. https://doi.org/10.1177/0954407011418029. [CrossRef] [Google Scholar]
  75. Roy S., Banerjee R., Bose P. K. Performance and exhaust emissions prediction of a CRDI assisted single cylinder diesel engine coupled with EGR using artificial neural network. Applied Energy 2014;119(15):330–340. https://doi.org/10.1016/j.apenergy.2014.01.044. [CrossRef] [Google Scholar]
  76. Bohari A.R., Mizuno N. Estimation of particulate loading in diesel particulate filter using neural network. JSME International Journal. Series C 1998;41(4):792–797. https://doi.org/10.1299/jsmec.41.792. [CrossRef] [Google Scholar]
  77. Bose N., Kumar N.S. Prediction of engine emissions through fuzzy logic modeling. International Conference on Conference on Computational Intelligence and Multimedia Applications, ICCIMA 2007. Sivakasi, Tamil Nadu, India; 2007. [Google Scholar]
  78. He Y., Rutland C.J. Application of artificial neural networks in engine modelling. International Journal of Engine Research 2004;5(4):281–296. https://doi.org/10.1243/146808704323224204. [CrossRef] [Google Scholar]
  79. Mohammadhassani J., Dadvand A., Khalilarya, S. Prediction and reduction of diesel engine emissions using a combined ANN-ACO method. Applied Soft Computing 2015;34:139–150. https://doi.org/10.1016Zj.asoc.2015.04.059. [CrossRef] [Google Scholar]
  80. Fragkiadoulakis P., Geivanidis S., Samaras Z. Modeling a resistive soot sensor by particle deposition mechanisms. Journal of Aerosol Science 2018;123:76–90. https://doi.org/10.1016/j.jaerosci.2018.06.005. [CrossRef] [Google Scholar]
  81. Feulner M., Hagen G., Müller A. Conductometric sensor for soot mass flow detection in exhausts of internal combustion engines. Sensors (Basel, Switzerland) 2015;15(11):28796–28806. https://doi.org/10.3390/s151128796. [CrossRef] [Google Scholar]
  82. Hagen G., Feulner M., Werner R., Schubert M. Capacitive soot sensor for diesel exhausts. Sensors and Actuators B: Chemical 2016;236:1020–1027. https://doi.org/10.1016/j.snb.2016.05.006. [CrossRef] [Google Scholar]
  83. Bartscherer P., Moos R. Improvement of the sensitivity of a conductometric soot sensor by adding a conductive cover layer. Journal of Sensors and Sensor Systems 2013;2(2):95–102. https://doi.org/10.5194/jsss-2-95-2013. [CrossRef] [Google Scholar]
  84. Kondo A., Yokoi S., Sakurai T., Nishikawa S. New particulate matter sensor for on board diagnosis. SAE International 2011. https://doi.org/10.4271/2011-01-0302. [Google Scholar]
  85. Takeyuki Kamimoto. A review of soot sensors considered for on-board diagnostics application. International Journal of Engine Research 2017;18(5-6):631–641. https://doi.org/10.1177/1468087416678499. [CrossRef] [Google Scholar]
  86. Grondin D., Breuil P., Viricelle J.P., Vernoux P. Development of a particulate matter sensor for diesel engine. Procedia Engineering 2015;120:1237–1240. https://doi.org/10.1016/j.proeng.2015.08.838. [CrossRef] [Google Scholar]
  87. Grondin D., Geara S., Breuil P. Influence of electrodes polarization on the response of resistive soot sensor. Procedia Engineering 2016;168:31–34. https://doi.org/10.1016/j.proeng.2016.11.124. [CrossRef] [Google Scholar]
  88. Grondin D., Westermann A., Breuil P., Viricelle J.P., Vernoux P. Influence of key parameters on the response of a resistive soot sensor. Sensors and Actuators B: Chemical 2016;236:1036–1043. https://doi.org/10.1016/j.snb.2016.05.049. [CrossRef] [Google Scholar]
  89. Sobocinski M., Bilby D., Kubinski D. SiC MOSFET soot sensor in a co-fired LTCC package. Procedia Engineering 2016;168:27–30. https://doi.org/10.1016/j.proeng.2016.11.123. [CrossRef] [Google Scholar]
  90. Ntziachristos L., Amanatidis S., Samaras Z. Application of the pegasor particle sensor for the measurement of mass and particle number emissions. SAE International 2013. https://doi.org/10.4271/2013-01-1561. [Google Scholar]
  91. Tang D., Zhao R., Wang S., Wang J., Ni L., Chen L. The simulation and experimental research of particulate matter sensor on diesel engine with diesel particulate filter. Sensors and Actuators A: Physical 2017;259:160–170. https://doi.org/10.1016/j.sna.2017.03.036. [CrossRef] [Google Scholar]
  92. Rodio M.G., Congedo P.M. Robust analysis of cavitating flows in the Venturi tube. European Journal of Mechanics B/Fluids 2014;44:88–99. https://doi.org/10.1016/j.euromechflu.2013.11.002. [CrossRef] [Google Scholar]
  93. Xu X., Zheng C., Yan P., Zhu W. Effect of electrode configuration on particle collection in a high-temperature electrostatic precipitator. Separation and Purification Technology 2016;166:157–163. https://doi.org/10.1016/j.seppur.2016.04.039. [CrossRef] [Google Scholar]
  94. Fischerauer G., Förster M., Moos R. Sensing the soot load in automotive diesel particulate filters by microwave methods. Measurement Science and Technology 2010;21(3):035108. https://doi.org/10.1088/0957-0233/21/3/035108. [CrossRef] [Google Scholar]
  95. Feulner M., Seufert F., Muller A., Hagen G., Moos R. Influencing parameters on the microwavebased soot load determination of diesel particulate filters. Topics in Catalysis 2017;60(3-5):374–380. https://doi.org/10.1007/s11244-016-0626-7. [CrossRef] [Google Scholar]
  96. Sappok A., Ragaller P., Bromberg L. Real-time engine and aftertreatment system control using fast response particulate filter sensors. SAE International 2016. https://doi.org/10.4271/2016-01-0918. [Google Scholar]
  97. Sappok A., Bromberg L. Radio frequency diesel particulate filter soot and ash level sensors: enabling adaptive controls for heavy-duty diesel applications. SAE International 2014. https://doi.org/10.4271/2014-01-2349. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.