Open Access
Issue
E3S Web Conf.
Volume 268, 2021
2020 6th International Symposium on Vehicle Emission Supervision and Environment Protection (VESEP2020)
Article Number 01035
Number of page(s) 13
DOI https://doi.org/10.1051/e3sconf/202126801035
Published online 11 June 2021
  1. Varnhagen R. “Electronic Horizon: A Map as a Sensor and Predictive Control[J]. SAE Technical Paper 2017-01-1945, 2017. DOI:10.4271/2017-01-1945, P1, P34. [Google Scholar]
  2. James R. Sayer. Safety Pilot Model Deployment[J/OL]. http://www.umtri.umich.edu/our-results/projects/safety-pilot-model -deployment.2014-02-16[2019-11-15] [Google Scholar]
  3. Umtri, U.-M. Two National Labs to Study Energy Savings in Connected Vehicles[N/OL].http://www.umtri.umich.edu/what-were-doing/news/u-m-two-national -labs-study-energy-savings-connected-vehicles.2015-11-19[2019-11-15] [Google Scholar]
  4. Jean-Charles Pandazis. eCoMove Cooperative Mobility Systems and Services for Energy Efficiency[J/OL]. http://ecomove-project.eu/assets/Uploads/Publications/eCoMoveBrochuresecured.pdf, P3-4. 2014-01-01[2019-11-15] [Google Scholar]
  5. Farzaneh, R., Zietsman J.A., Lee, D., et al. Texas-Specific Drive Cycles and Idle Emissions Rates for Using with EPA's MOVES Model - Final Report[J]. Diesel Trucks, 2014. [Google Scholar]
  6. Jun Liu, Kara Mkockelman, Aqshems Nichols. Anticipating the Emissions Impacts of Smoother Driving by Connected and Autonomous Vehicles Using the MOVES Model[J/OL]. Transportation Research Board Annual Meeting, 2017. http://tti.tamu.edu/documents/0-6629-1.pdf , P4-11. 2017-01-01[2019-11-15] [Google Scholar]
  7. Feng Yujiu, Zhao Wei, Qian Guogang, Evironment simulation parameters settings for the tests of LDV’s AC system Performance [J], Refrigeration and Air-conditioning, 2016(5):79–86. [Google Scholar]
  8. Europe Commission. L3 Pilot —Piloting Automated Driving on European Roads[N/OL]. https://cordis.europa.eu/project/rcn/210915_en.pdf, P1. 2017 - 09 - 01[2019-11-15] [Google Scholar]
  9. The Joint Research Center Institute for Energy and Transport. Technical Guidelines for the Preparation of Applications for the Approval of Innovative Technologies Pursuant to Regulation (EC) No 443/2009 of the European Parliament and of the Council (version Feb. 2013) [S]. P7-9. [Google Scholar]
  10. Europe Commission. On the Approval of the Bosch System for Navigation-Based Preconditioning of the Battery State of Charge for Hybrid Vehicles as an Innovative Technology for Reducing CO2 Emissions from Passenger Cars Pursuant to Regulation (EC) No 443/2009 of the European Parliament and of the Council 6 (Oct. 2013): 2013/529/EU[S]P3-5. [Google Scholar]
  11. Europe Commission. On the Approval of the Engine Idle Coasting Function as an Innovative Technology for Reducing CO2 Emission from Passenger Cars Pursuant to Regulation(EC) No 443/2009 of the European Parliament and of the Council (Dec. 2018):EU 2018/2079 [S]. P 3–11. [Google Scholar]
  12. ARPA-E. NEXT-Generation Energy Technologies for Connected and Automated on-Road-vehicles (NEXTCAR) Program Overview[N/OL]. https://arpa-e.energy.gov/sites/default/files/documents/files/NEXTC AR_ProgramOverview.pdf, P1. 2017-01-01[2019—11—15] [Google Scholar]
  13. Zhao J., Wu H., Chang C.F. Virtual Traffic Simulator for Connected and Automated Vehicles[J]. SAE Technical Paper 2019-01-0676, 2019. DOI: 10.4271/2019-01-0676, P1. [Google Scholar]
  14. Block B., Huynh B., Boyle S., Stockar, S., et al. Analysis of the Effect of Vehicle Platooning on the Optimal Control of a Heavy Duty Engine Thermal System[J]. SAE Technical Paper 2019-01-1259, 2019. DOI: 10.4271/2019-01-1259, P8. [Google Scholar]
  15. Robinette D., Kostreva E., Krisztian, A., et al. PHEV Real World Driving Cycle Energy and Fuel and Consumption Reduction Potential for Connected and Automated Vehicles[J]. SAE Technical Paper 2019-01-0307, 2019. DOI: 10.4271/2019-01-0307, P12. [Google Scholar]
  16. Rengerajan S.B., Hotz S., Hirsch, C., et al. Test Methodology to Quantify and Analyze Energy Consumption of Connected and Automated Vehicles[J]. SAE Technical Paper 2019-01-0116, 2019. DOI: 10.4271/2019-01-0116, P 6. [Google Scholar]
  17. Olin P., Aggoune K., Tang, L., et al. Ducing Fuel Consumption by Using Information from Connected and Automated Vehicle Modules to Optimize Propulsion System Control[J]. SAE Technical Paper 2019-01-1213, 2019. DOI: 10.4271/2019-01-1213, P1. [Google Scholar]
  18. Lee H., Lee J., Yoo, S., et al. Utilization of ADAS for Improving Performance of Coasting in Neutral[J]. SAE Technical Paper 2018-01-0603, 2018. DOI:10.4271/2018-01-0603, P 2–5. [Google Scholar]
  19. Santin O., Beran J., Mikulas, O., et al. On the Robustness of Adaptive Nonlinear Model Predictive Cruise Control[J]. SAE Technical Paper 2018-01-1360, 2018. DOI:10.4271/2018-01-1360, P 12. [Google Scholar]
  20. Baker D., Asher Z.D., Bradley T. V2V Communication Based Real-World Velocity Predictions for Improved HEV Fuel Economy[J]. SAE Technical Paper 2018-01-1000, 2018. DOI:10.4271/2018-01-1000, P7, P9. [Google Scholar]
  21. Tunnell J.A., Asher Z.D., Pasricha, S., et al. Towards Improving Vehicle Fuel Economy with ADAS[J]. SAE Technical Paper 2018-01-0593, 2018. DOI:10.4271/2018-01-0593. [Google Scholar]
  22. Asher Z.D., Tunnell J.A., Baker D.A., et al. Enabling Prediction for Optimal Fuel Economy Vehicle Control [J]. SAE Technical Paper 2018-01-1015, 2018. DOI:10.4271/2018-01-1015. [Google Scholar]
  23. Tale L., Hochgrab S., Hall, J., et al. Energy Efficiency of Autonomous Car Powertrain[J]. SAE Technical Paper 2018-01-1092, 2018. DOI: 10.4271/2018-01-1092, P8. [Google Scholar]
  24. Wang Xuo, Du Guangqian, Huang Yong, Research on Predicting and Tracking Algorithm of SOC Trajectory for PHEV with Traffic Information Considered[J]. Journal of Chongqing University of Technology(Natural Science), 2018(8):1–7. [Google Scholar]
  25. Kim, D., Eo, J.S., Kim, Y., Guanetti, J. et al., “Energy-Optimal Deceleration Planning System for Regenerative Braking of Electrified Vehicles with Connectivity and Automation,” SAE Technical Paper 2020-01-0582, 2020, DOI:10.4271/2020-01-0582, 10–12 [Google Scholar]
  26. Qian Guogang, Wu Di, Qin Hongyu, Fuel Saving Effect of Cylinder Deactivation Based on Dynamic Skip Fire, Vehicle Engine, 2019(2):10–15. [Google Scholar]
  27. Ozbek M., Nishida S., Biglia, M., et al. Maximizing Coasting of 48V Vehicles with Cold-Storage Evaporator[J]. SAE Technical Paper 2018-37-0023, 2018. DOI: 10.4271/2018-37-0023, P1, P5. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.