Open Access
E3S Web Conf.
Volume 269, 2021
2021 International Conference on Environmental Engineering, Agricultural Pollution and Hydraulical Studies (EEAPHS 2021)
Article Number 01009
Number of page(s) 8
Section Environmental Engineering
Published online 09 June 2021
  1. Song, M., Fisher, R., & Kwoh, Y. 2019. Technological challenges of green innovation and sustainable resource management with large scale data. Technological Forecasting and Social Change, 144, 361-368. [Google Scholar]
  2. Chen, J., Xu, C., Cui, L., Huang, S. & Song, M. 2019. Driving factors of CO2 emissions and inequality characteristics in China: A combined decomposition approach. Energy Economics, 78, 589-597. [Google Scholar]
  3. Schroeder, P. M., and R. B. Chapman. 2014. Renewable energy leapfrogging in China’s urban development? current status and outlook. Sustainable Cities and Society. 11, 31-39. doi: 10.1016/j.scs.2013.11.007. [Google Scholar]
  4. Song, M., Zhu, S., Wang, J., & Zhao, J. 2020. Share green growth: Regional evaluation of green output performance in China. International Journal of Production Economics, 219, 152-163. [Google Scholar]
  5. Zeng, S., and J. Chen. 2016. Forecasting the Allocation Ratio of Carbon Emission Allowance Currency for 2020 and 2030 in China. Sustainability. 8 (7), 650. doi: 10.3390/su8070650 [Google Scholar]
  6. Jin, P., Peng, C., & Song, M. 2019. Macroeconomic uncertainty, high-level innovation, and urban green development performance in China. China Economic Review, 55, 1-18. [Google Scholar]
  7. Yang, J., J. Wu, T. He, L. Li, D. Han, and Z. Wang. 2016. Energy gases and related carbon emissions in China. Resources, Conservation & Recycling. 113, 140-148. doi: 10.1016/j.resconrec.2016.06.016. [Google Scholar]
  8. Yang, L., K. Wang, and J. Geng. 2018. China’s regional ecological energy efficiency and energy saving and pollution abatement potentials: an empirical analysis using epsilon-based measure model. Journal of Cleaner Production, 194, 300-308. doi: 10.1016/j.jclepro.2018.05.129. [Google Scholar]
  9. Song, M., Zhu, S., Wang, J., & Wang, S. 2019. China’s natural resources balance sheet from the perspective of government oversight: Based on the analysis of governance and accounting attributes. Journal of environmental management, 248, 109-232. [Google Scholar]
  10. Cassen, C., M. Hamdi-Cherif, G. Cotella, J. Toniolo, P. Lombardi, and JC. Hourcade. 2018. Low Carbon Scenarios for Europe: An Evaluation of Upscaling Low Carbon Experiments. Sustainability. 10 (3), 848. doi: 10.3390/su10030848. [Google Scholar]
  11. Deakin, M., and A. Reid. 2018. Smart cities: Under-gridding the sustainability of city-districts as energy efficient-low carbon zones. Journal of Cleaner Production. 173, 39-48. doi: 10.1016/j.jclepro.2016.12.054. [Google Scholar]
  12. Uchida, K., M. Fujii, S. Ashina, S. Maki, T. Hanya, K. Aizawa and T. Fujita. 2017. Field Trial toward Low-carbon Society in Indonesia. Fujitsu Scientific & Technical Journal. 53(3), 62-72. [Google Scholar]
  13. Mahony, T. O. 2013. Decomposition of Ireland’s carbon emissions from 1990 to 2010: an extended KaYa identity. Energy Policy. 59(4-5), 573-581. doi: 10.1016/j.enpol.2013.04.013. [Google Scholar]
  14. Kerkhof, A.C., M. René, J. Benders, and H. C. Moll. 2009. Determinants of variation in household CO2 emissions between and within countries. Energy Policy. 37 (4), 1509-1517. doi: 10.1016/j.enpol.2008.12.013. [Google Scholar]
  15. Shi, B., H. Yang, J. Wang, and J. Zhao. 2016. City Green Economy Evaluation: Empirical Evidence from 15 Sub-Provincial Cities in China. Sustainability. 8 (6), 551. doi: 10.3390/su8060551. [Google Scholar]
  16. Sun, L., H. Li, L. Dong, K. Fang, J. Ren, and Y. Geng. 2017. Eco-benefits assessment on urban industrial symbiosis based on material flows analysis and energy evaluation approach: a case of Liuzhou city, China. Resources, Conservation & Recycling. 119, 78-88. doi: 10.1016/j.resconrec.2016.06.007. [Google Scholar]
  17. Yang, X., R. Li. 2018. Investigating Low-Carbon City: Empirical Study of Shanghai. Sustainability. 10(4), 1054. doi: 10.3390/su10041054. [Google Scholar]
  18. Su, M., C. Liang, B. Chen, S. Chen, and Z. Yang. 2012. Low-Carbon Development Patterns: Observations of Typical Chinese Cities. Energies. 5(2) 291-304. doi: 10.3390/en5020291. [Google Scholar]
  19. Xie, Z., X. Gao, J. He, and C. Feng. 2016. Evaluating rural low-carbon communities: a study of Guangdong province, China. Energy & Buildings, 133, 777-789. doi: 10.1016/j.enbuild.2016.10.042 [Google Scholar]
  20. Jin, X.. 2017. Low carbon city construction planning for the needs of residents. Agro Food Industry Hi-Tech. 28(1), 2472-2476. [Google Scholar]
  21. Li, S., and X. Shi. 2012. Study on the Construction of low-carbon economy composite evaluation in Sichuan province. Science and Technology Management Research. 32(21), 61-65. doi: 10.3969/j.issn.1000-7695.2012.21.014. [Google Scholar]
  22. Zheng, S. 2013. Construction and Empirical Study on Evaluation Index System of Provincial Low Carbon Economy Development. Urban Problems. 11, 61-66 (In Chinese). [Google Scholar]
  23. Yuan, X., L. Lei, and Y. Zhong. 2013. Construction and Empirical Analysis of Low Carbon Economy Evaluation Index System. Urban Problems. 1, 56-61 (In Chinese). [Google Scholar]
  24. Ma, J., L. Zhou, and W. Li. 2010. Indicator System Construction for Urban Low Carbon Economy Development. Science & Technology Progress and Policy. 27 (22) 165-167. doi: 10.3969/j.issn.1001-7348.2010.22.039. [Google Scholar]
  25. Zhang, X., and W. Wu. 2017. Comprehensive Evaluation and Coordination Degree of Urban Low-carbon Economy Development Level— Taking Shaanxi Province as an Example. Development Research. 38-43 (In Chinese). [Google Scholar]
  26. Zhu, X., and Z. Lu. 2013. Evaluation on the Low-carbon City Development based on DPSIR Model—The Case of Jiangsu Province. Journal of Technical Economics & Management. 1, 115-118. doi: 10.3969/j.issn.1004-292X.2013.01.027. [Google Scholar]
  27. Glatzmaier, J., H. Wehrbein, and P. Diedrich. 1995. Die entwicklung eines resorbierbaren implantatsystems zur orthodontischen verankerung. Das BIOS-Implantatsystem. Fortschritte Der Kieferorthopädie, 56(3), 175-181. doi: 10.1007/BF02276634. [Google Scholar]
  28. Elżbieta Horszczaruk, and P. Brzozowski. 2014. Bond strength of underwater repair concretes under hydrostatic pressure. Construction & Building Materials, 72(72), 167-173. doi: 10.1016/j.conbuildmat.2014.08.020. [Google Scholar]
  29. Lu, X. 2014. Evaluation of China’s Provincial Resources and Environment Carrying Capacity and Spatial Statistical Analysis. Statistics & Decision. 7, 116-120 (In Chinese). [Google Scholar]
  30. Shang, W.. 2004. A new indicator reflecting the degree of income difference—the residual expectation coefficient. Statistical Research. 1, 35-37. doi: 10.3969/j.issn.1002-4565.2004.01.008 (In Chinese). [Google Scholar]
  31. Wang, Z., F. Yin, Y. Zhang, and X. Zhang. 2012. An empirical research on the influencing factors of regional CO2 emissions: evidence from Beijing city, China. Applied Energy. 100(4), 277-284. doi: 10.1016/j.apenergy.2012.05.038. [Google Scholar]
  32. Liming, Y., X. Jiuping, and L. Yifan. 2014. Evaluation of the efficiency of low carbon industrialization in cultural and natural heritage: taking Leshan as an example. Sustainability. 6(6), 3825-3842. doi: 10.3390/su6063825. [Google Scholar]
  33. Liu, G., Y. Hao, Y. Zhou, Z. Yang, and M. Su. 2016. China’s low-carbon industrial transformation assessment based on logarithmic mean divisia index model. Resources, Conservation and Recycling. 108, 156-170. doi: 10.1016/j.resconrec.2016.02.002. [Google Scholar]
  34. Yang, L., J. Wang, and J. Shi. 2016. Can China meet its 2020 economic growth and carbon emissions reduction targets? Journal of Cleaner Production. 142, 993-1001. doi: 10.1016/j.jclepro.2016.08.018. [Google Scholar]
  35. de Koning, A., G. Huppes, B. Sprecher, G. van Engelen, and A. Tucker. 2018. Metal supply constraints for a low-carbon economy? Resources, Conservation & Recycling. 129, 202-208. doi: 10.1016/j.resconrec.2017.10.040. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.