Open Access
Issue
E3S Web Conf.
Volume 269, 2021
2021 International Conference on Environmental Engineering, Agricultural Pollution and Hydraulical Studies (EEAPHS 2021)
Article Number 01012
Number of page(s) 7
Section Environmental Engineering
DOI https://doi.org/10.1051/e3sconf/202126901012
Published online 09 June 2021
  1. Lu, M., Cheng, S., Fang, H., et al., 2021. Organic nitrogen addition causes decoupling of microbial nitrogen cycles by stimulating gross nitrogen transformation in a temperate forest soil. Geoderma. 385(1-3): 114886. https://doi.org/10.1016/j.geoderma.2020.114886 [Google Scholar]
  2. J, Alahuhta., Lindholm, M., Bove, C.P., et al. 2018. Global patterns in the metacommunity structuring of lake macrophytes: regional variations and driving factors. Oecologia. 188: 1167-1182. https://doi.org/10.1007/s00442-018-4294-0 [Google Scholar]
  3. Cui, Y., Bing, H., Fang, L., et al., 2019. Extracellular enzyme stoichiometry reveals the carbon and phosphorus limitations of microbial metabolisms in the rhizosphere and bulk soils in alpine ecosystems. Plant Soil. https://doi:10.1007/s11104-019-04159-x [Google Scholar]
  4. Zhang, W., Liu, W., Xu, M., et al., 2019. Response of forest growth to C: N: P stoichiometry in plants and soils during robinia pseudoacacia afforestation on the Loess Plateau, China. Geoderma. 337: 280-289. https://doi.org/10.1016/j.geoderma.2018.09.042 [Google Scholar]
  5. Chen, D.D., Li, Q., Liu, Z., et al., 2020. Variations of forage yield and nutrients with altitude gradients and their influencing factors in alpine meadow of Sanjiangyuan, China. Journal of Soil Science and Plant Nutrition. 20: 2164-2174. https://doi.org/10.1007/s42729-020-00284-0 [Google Scholar]
  6. Li, D., Wang, Z., Tian, H., et al., 2017. Carbon, nitrogen and phosphorus contents in soils on taibai mountain and their ecological stoichiometry relative to elevation. Acta Pedofil Sinica. 54 (1): 160-170. (In Chinese) https://doi.org/10.11766/trxb201604140096 [Google Scholar]
  7. Feng, J., Tang, M., Zhu, B., 2021. Soil priming effect and its responses to nutrient addition along a tropical forest elevation gradient. Global Change Biology. 27(12): 2793-2806 https://doi.org/10.1111/gcb.15587 [Google Scholar]
  8. Jia, X., Chen, S., Yang, Y., et al., 2017. Organic carbon prediction in soil cores using VNIR and MIR techniques in an alpine landscape. Scientific Reports. 7(1): 2144. https://doi.org/10.1038/s41598-017-02061-z [Google Scholar]
  9. Zhong, H., Smith, C., Robinson, B., et al., 2020. Soil phosphorus dynamics along a short ‐ term ecological restoration trajectory of a coastal sandplain forest in New Zealand. Land Degradation & Development. 32: 1250-1261. https://doi.org/10.1002/ldr.3782 [Google Scholar]
  10. Ma, H., Yang, X., Guo, Q., et al., 2016. Soil organic carbon pool along different altitudinal level in the Sygera Mountains, Tibetan Plateau. Journal of Mountain Science. 13(3): 476-483. https://doi.org/10.1007/s11629-014-3421-6 [Google Scholar]
  11. Suonan, J., Classen, A.T., Sanders, N.J., et al., 2019. Plant phenological sensitivity to climate change on the tibetan plateau and relative to other areas of the world. Ecosphere. 10(1): e02543. https://doi.org/10.1002/ecs2.2543 [Google Scholar]
  12. Liang, E., Wang, Y., Eckstein D., et al., 2011. Little change in the fir tree-line position on the southeastern Tibetan Plateau after 200 years of warming. New Phytologist. 190(3): 760-769. https://doi.org/10.1111/j.1469-8137.2010.03623.x [Google Scholar]
  13. Sabetizade, M., Gorji, M., Roudier, P., et al., 2021. Combination of MIR spectroscopy and environmental covariates to predict soil organic carbon in a semi-arid region. Catena. 196: 104844. https://doi:10.1016/j.catena.2020.104844 [Google Scholar]
  14. Andriamananjara, A., Chevallier, T., Masse, D., et al., 2019. Land management modifies the temperature sensitivity of soil organic carbon, nitrogen and phosphorus dynamics in a Ferralsol. Applied Soil Ecology. 138: 112-122. https://doi.org/10.1016/j.apsoil.2019.02.023 [Google Scholar]
  15. Zhang, Y., Li, C., Wang, M., 2019. Linkages of C: N: P stoichiometry between soil and leaf and their response to climatic factors along altitudinal gradients. Journal of Soils and Sediments. 19: 1820-1829. https://doi.org/10.1007/s11368-018-2173-2 [Google Scholar]
  16. Yu, M.F., Tao, Y., Liu, W., et al., 2020. C, N, and P stoichiometry and their interaction with different plant communities and soils in subtropical riparian wetlands. Environmental Science and Pollution Research. 27(3): 1024-1034. https://doi.org/10.1007/s11356-019-07004-x [Google Scholar]
  17. Braak., C.J.F., Smilauer, P., 2002. Canoco reference manu`al and canodraw for windows user’s guide: Software for canonical community ordination (version 4.5). www.canoco.com. Ithaca NY, USA. [Google Scholar]
  18. Liu, T., Wu, X., Li, H., et al., 2020. Soil organic matter, nitrogen and pH driven change in bacterial community following forest conversion. Forest Ecology and Management. 477: 118473. https://doi.org/10.1016/j.foreco.2020.118473 [Google Scholar]
  19. Camenzind, T., Hättenschwiler, S., Treseder, K.K., et al., 2018. Nutrient limitation of soil microbial processes in tropical forests. Ecological Monographs. 88 (1): 4-21. https://doi.org/10.1002/ecm.1279 [Google Scholar]
  20. Al-Rowaily, S.L., Al-Nomari, G., Assaeed, A.M., et al., 2020. Infection by Plicosepalus curviflorus mistletoe affects the nutritional elements of Acacia species and soil nutrient recycling in an arid rangeland. Plant Ecology. 221: 1017-1028. https://doi.org/10.1007/s11258-020-01058-5 [Google Scholar]
  21. Dong, S.K., Sha, W., Su, X.K., et al. 2019. The impacts of geographic, soil and climatic factors on plant diversity, biomass and their relationships of the alpine dry ecosystems: cases from the Aerjin Mountain Nature Reserve, China. Ecological Engineering. 127: 170-177. https://doi.org/10.1016/j.ecoleng.2018.10.027 [Google Scholar]
  22. D.K. Biswas., B.L. Ma., M.J. Morrison., 2019. Changes in leaf nitrogen and phosphorus content, photosynthesis, respiration, growth, and resource use efficiency of a rapeseed cultivar as affected by drought and high temperatures. Canadian Journal of Plant Science. 99(4): 413-419. https://doi.org/10.1139/cjps-2018-0023 [Google Scholar]
  23. Leloup, J., Baude, M., Nunan, N., et al., 2018. Unravelling the effects of plant species diversity and aboveground litter input on soil bacterial communities. Geoderma. 317: 1-7. https://doi.org/10.1016/j.geoderma.2017.12.018 [Google Scholar]
  24. Stéphane, Bazot., Zarafshar, M., 2020. Do tree plantations or cultivated fields have the same ability to maintain soil quality as natural forests? Applied Soil Ecology. 151: 1–10. https://doi.org/10.1016/j.apsoil.2020.103536 [Google Scholar]
  25. Su, Y., Liu, J., Zhang, Y., et al., 2021. More drought leads to a greater significance of biocrusts to soil multifunctionality. Functional Ecology. 00: 1-12. https://doi:10.1111/1365-2435.13761 [Google Scholar]
  26. Xu, S., Sardans, J., Zhang, J., et al., 2020. Variations in foliar carbon : nitrogen and nitrogen : phosphorus ratios under global change: a metaanalysis of experimental field studies. Scientific Reports. 10(1): 12156. https://doi.org/10.1038/s41598-020-68487-0 [Google Scholar]
  27. Fang, Y., Bhupinder Pal., Singh Damian., et al., 2020. Nutrient stoichiometry and labile carbon content of organic amendments control microbial biomass and carbon-use efficiency in a poorly structured sodic-subsoil. Biology and Fertility of Soils, 56(2): 219-233. https://doi.org/10.1007/s00374-019-01413-3 [Google Scholar]
  28. Yuan, X., Niu, D., Gherardi, L. A., et al., 2019. Linkages of stoichiometric imbalances to soil microbial respiration with increasing nitrogen addition: evidence from a long-term grassland experiment. Soil Biology and Biochemistry. 138: 107580. https://doi.org/10.1016/j.soilbio.2019.107580 [Google Scholar]
  29. Yue, K., Peng, Y., Fornara, D. A., et al., 2019. Responses of nitrogen concentrations and pools to multiple environmental change drivers: a metaanalysis across terrestrial ecosystems. Global Ecology and Biogeography. 28: 690-724. https://doi.org/10.1111/geb.12884 [Google Scholar]
  30. Feng, J., Wei, K., Chen, Z., et al., 2019. Coupling and decoupling of soil carbon and nutrient cycles across an aridity gradient in the drylands of northern china: evidence from ecoenzymatic stoichiometry. Global Biogeochemical Cycles. 33(5): 559-569. https://doi.org/10.1029/2018GB006112 [Google Scholar]
  31. Wang, Y., Ren, Z., Ma, P., et al., 2020. Effects of grassland degradation on ecological stoichiometry of soil ecosystems on the Qinghai-Tibet Plateau. Science of the Total Environment. 722: 137910. https://doi.org/10.1016/j.scitotenv.2020.137910 [Google Scholar]
  32. N, Lei, Li, J., Chen, T., 2021. Respiration characteristics and its responses to hydrothermal seasonal changes in reconstructed soils. Scientific Reports, 11: 144. https://doi.org/10.1038/s41598-020-80623-4 [Google Scholar]
  33. Antisari, L.V., Papp R., Vianello G., et al., 2018. Effects of Douglas Fir stand age on soil chemical properties, nutrient dynamics, and enzyme activity: A case study in northern Apennines, Italy. Forests, 9: 641. https://doi.org/10.3390/f9100641 [Google Scholar]
  34. Delgado-Baquerizo, M., Eldridge, D.J., Maestre, F.T., et al., 2018. Aridity decouples C: N: P stoichiometry across multiple trophic levels in terrestrial ecosystems. Ecosystems. 21 (3): 459-468. https://doi:10.1007/s10021-017-0161-9 [Google Scholar]
  35. Ai, Z., He, L., Xin, Q., Yang, T., et al., 2017. Slope aspect affects the non-structural carbohydrates and c: N: P stoichiometry of artemisia sacrorum on the Loess Plateau in China. Catena. 152: 9-17. https://doi.org/10.1016/j.catena.2016.12.024 [Google Scholar]
  36. Tian, H., Chen, G., Zhang, C., et al., 2010. Pattern and variation of C: N: P ratios in China’s soils: a synthesis of observational data. Biogeochemistry. 98(1-3): 139-151. https://doi.org/10.1007/s10533-009-9382-0 [Google Scholar]
  37. Zhang, J., Zhao, N., Liu, C., et al., 2018. C:N:P stoichiometry in China’s forests: From organs to ecosystems. Ecology Letters. 32: 50-60. https://doi.org/10.1111/1365-2435.12979 [Google Scholar]
  38. Xie, J., Chang, S., Zhang, Y., et al., 2016. Plant and soil ecological stoichiometry with vertical zonality on the northern slope of the middle tianshan mountains. Acta Ecologica Sinica. 36 (14): 4363--4372. (In Chinese) https://doi.org/10.5846/stxb201506301387 [Google Scholar]
  39. Qin, H., Fu, X., Lu, Y., et al., 2019. Soil C: N: P stoichiometry at different altitudes in mao’er mountain, guangxi, china. Journal of Applied Ecology. 30(3): 711-717. (In Chinese) https://doi.org/10.13287/j.1001-9332.201903.027 [Google Scholar]
  40. Yang, Y., Zhou, Y., Shi, Z., et al., 2020. Interactive elevation and land use on soil bacterial communities in the Tibetan Plateau. Pedosphere. 30(6): 817-831. https://doi.org/10.1016/S1002-0160(19)60836-2 [Google Scholar]
  41. Feng, D., Bao, W., Pang, X., 2017. Consistent profile pattern and spatial variation of soil C/N/P stoichiometric ratios in the subalpine forests. Journal of Soils and Sediments. 17(8): 2054-2065. https://doi:10.1007/s11368-017-1665-9 [Google Scholar]
  42. Devi, S.B., Sherpa S., 2019. Soil carbon and nitrogen stocks along the altitudinal gradient of the Darjeeling Himalayas, India. Environmental Monitoring and Assessment. 191(6): 361. https://doi.org/10.1007/s10661-019-7470-8 [Google Scholar]
  43. Chen, X., Wang, G., Zhang, T., et al., 2017. Effects of warming and nitrogen fertilization on GHG flux in an alpine swamp meadow of a permafrost region. Science of the Total Environment. 601: 1389-1399. https://doi.org/10.1016/j.scitotenv.2017.06.028 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.