Open Access
Issue
E3S Web Conf.
Volume 269, 2021
2021 International Conference on Environmental Engineering, Agricultural Pollution and Hydraulical Studies (EEAPHS 2021)
Article Number 02005
Number of page(s) 10
Section Agricultural Pollution
DOI https://doi.org/10.1051/e3sconf/202126902005
Published online 09 June 2021
  1. Wang, Yi.-ran., Li Y.-H., Guo, T., Li H.-L., Tan Y.-F., Zhang Z., Zhang X.-G., Mai S.-Y., Zhang J.-Q., 2018. Measurement of pharmacokinetics and tissue distribution of three bioactive constituents from Zanthoxylum armatum DC in rat plasma and tissues through UFLC-MS/MS. Journal of Chromatography B. 1087-1088, 80-89. [Google Scholar]
  2. Nooreen, Z., Singh, S., Singh, D. K., Tandon, S., Ahmad, A., Luqman, S., 2017. Characterization and evaluation of bioactive polyphenolic constituents from Zanthoxylum armatum DC., a traditionally used plant. Biomed. Pharmacother.. 89, 366-375. [Google Scholar]
  3. Dissa, A.O., Bathiebo, D.J., Desmorieux, H., Coulibaly, O., Koulidiati, J., 2011. Experimental characterisation and modelling of thin layer direct solar drying of Amelie and Brooks mangoes. Energy. 36(5), 2517-2527. [Google Scholar]
  4. Seerangurayar T., Al-Ismaili, A.M., Janitha Jeewantha, L.H., Al-Habsi, N.A., 2019. Effect of solar drying methods on color kinetics and texture of dates. Food Bioprod. Process.. 116, 227-239. [Google Scholar]
  5. Tunde-Akintunde, T. Y., 2011. Mathematical modeling of sun and solar drying of chilli pepper. Renew. Energy. 36(8), 2139-2145. [Google Scholar]
  6. Fudholi, A., Sopian, K., Alghoul, M.A., Ruslan, M.H., Othman, M.Y., 2015. Performances and improvement potential of solar drying system for palm oil fronds. Renew. Energy. 78, 561-565. [Google Scholar]
  7. Chauhan, P.S., Kumar, A., 2018. Thermal modeling and drying kinetics of gooseberry drying inside north wall insulated greenhouse dryer. Appl. Therm. Eng., 130(5), 587-597. [Google Scholar]
  8. Saleh, A., Badran, I., 2009. Modeling and experimental studies on a domestic solar dryer. Renew. Energy. 34(10), 2239-2245. [Google Scholar]
  9. Khadraoui, A.E., Hamdi, I., Kooli, S., Guizani, A., 2019. Drying of red pepper slices in a solar greenhouse dryer and under open sun: Experimental and mathematical investigations. Innov. Food Sci. Emerg. Technol. 52, 262-270. [Google Scholar]
  10. Panwar, N. L., Kaushik, S. C., Kothari, S., 2013. Thermal modeling and experimental validation of solar tunnel dryer: a clean energy option for drying surgical cotton. Int. J. Low-Carbon Technol.. 0, 1-13. [Google Scholar]
  11. Roberts, J. S., Kidd, D. R., Padilla-Zakour, O., 2008. Drying kinetics of grape seeds. Journal of Food Eng.. 89(4), 460-465. [Google Scholar]
  12. Benseddik, A., Azzi, A., Zidoune, M.N., Allaf, K., 2018. Mathematical empirical models of thin-layer airflow drying kinetics of pumpkin slice. Engineering in Agriculture, Environment and Food. 11(4), 220-231. [Google Scholar]
  13. Erick César, L.-V., Ana Lilia, C.-M., Octavio, G.-V., Isaac, P.F., Rogelio, B.O., 2019. Thermal performance of a passive, mixed-type solar dryer for tomato slices (Solanum lycopersicum). Renew. Energy. 147(1), 845-855. [Google Scholar]
  14. Avhad, M.R., Marchetti J.M., 2016. Mathematical modelling of the drying kinetics of Hass avocado seeds. Ind. Crops Prod.. 91, 76-87. [Google Scholar]
  15. Onwude, D.I., Hashim, N., Janius, R.B., Nawi, N.M., 2016. Modeling the thin‐layer drying of fruits and vegetables: A review. Compr. Rev. Food. Sci. Food Saf.. 15(3), 599-618. [Google Scholar]
  16. Zhang, Q.-A., Song, Y., Wang, X., Zhao, W.-Q., Fan, X.-H., 2016. Mathematical modeling of debittered apricot (Prunus armeniaca L.) kernels during thin-layer drying. CyTA-J. Food. 14(4), 509-517. [Google Scholar]
  17. Dissa, A.O., Bathiebo, J., Kam, S., Savadogo P.W., Desmorieux H., Koulidiati J., 2009. Modelling and experimental validation of thin layer indirect solar drying of mango slices. Renew. Energy. 34(4), 1000-1008. [Google Scholar]
  18. Rosa, D.P, Cantú-Lozano, D., Luna-Solano, G., 2015. Mathematical modeling of orange seed drying kinetics. Cienc. Agrotec.. 39(3), 291-300. [Google Scholar]
  19. Keneni, Y. G., Hvoslef-Eide, A. K. (Trine), Marchetti, J. M., 2019. Mathematical modelling of the drying kinetics of Jatropha curcas L. seeds. Ind. Crop. Prod.. 132, 12-20. [Google Scholar]
  20. Komolafe, C.A., Ojediran, J.O., Ajao, F.O., Dadac, O.A., Afolabi, Y.T., Oluwaleye, I.O., Alake, A.S., 2019. Modelling of moisture diffusivity during solar drying of locust beans with thermal storage material under forced and natural convection mode. Case Stud Therm Eng. 15, 100542. [Google Scholar]
  21. Standardization Administration of China (SAC), 2013. Agricultural Standards of China: GB/T 30391-2013. China standards press, Prickly ash. Beijing (China). (In Chinese) [Google Scholar]
  22. Sriwichai, T., Sookwong, P., Siddiqui, M. W., Sommano, S. R., 2019. Aromatic profiling of Zanthoxylum myriacanthum (makwhaen) essential oils from dried fruits using different initial drying techniques. Industrial Crops and Products. 133, 284–291. [Google Scholar]
  23. Phuyal, Nirmala; Jha, Pramod Kumar; Prasad Raturi, Pankaj; Rajbhandary, Sangeeta (2018). Zanthoxylum armatum DC.: Current knowledge, gaps and opportunities in Nepal. Journal of Ethnopharmacology. 229, 326-341. [Google Scholar]
  24. Jie, Y., Li, S., Ho, C.-T., 2019. Chemical composition, sensory properties and application of Sichuan pepper (Zanthoxylum genus). Food Sci Hum Well. 8(2), 115-125. [Google Scholar]
  25. Jiang, L., Kubota, K., 2004. Differences in the Volatile Components and Their Odor Characteristics of Green and Ripe Fruits and Dried Pericarp of Japanese Pepper (Zanthoxylum piperitumDC.). J. Agric. Food Chem.. 52(13), 4197-4203. [Google Scholar]
  26. Perea-Flores, M.J., Garibay-Febles, V., Chanona-Perez, J.J., 2012. Mathematical modelling of castor oil seeds (Ricinus communis) drying kinetics in fluidized bed at high temperatures. Ind. Crop. Prod.. 38, 64-71. [Google Scholar]
  27. Chauhan, P.S., Kumar, A., 2016. Performance analysis of greenhouse dryer by using insulated north-wall under natural convection mode. Energy. Rep. 2, 107-116. [Google Scholar]
  28. Liu, Yuping., Li, Qingru., Yang, Wenxi., Sun, Baoguo., Zhou, Ying., Zheng, Yang., Huang, Mingquan., Yang, Wenjie., 2020. Characterization of the Potent Odorants in Zanthoxylum armatum DC Prodr. Pericarp Oil by Application of Gas Chromatographyâ Mass Spectrometryâ Olfactometry and Odor Activity Value. Food Chemistry. 139, 126-564. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.