Open Access
Issue |
E3S Web Conf.
Volume 271, 2021
2021 2nd International Academic Conference on Energy Conservation, Environmental Protection and Energy Science (ICEPE 2021)
|
|
---|---|---|
Article Number | 03017 | |
Number of page(s) | 9 | |
Section | Research on Energy Chemistry and Chemical Simulation Performance | |
DOI | https://doi.org/10.1051/e3sconf/202127103017 | |
Published online | 15 June 2021 |
- Corina E. Antal, Andrew M. Hudson, E. Kang, C. Zanca, C. Wirth, Natalie L. Stephenson, et al. Cancer-Associated Protein Kinase C Mutations Reveal Kinase's Role as Tumor Suppressor. Cell (Cambridge). 160(3):489–502 (2015) [CrossRef] [Google Scholar]
- M. Cooke, A. Magimaidas, V. Casado-Medrano, M.G. Kazanietz. Protein kinase C in cancer: The top five unanswered questions. Molecular carcinogenesis. 56(6):1531–1542 (2017) [CrossRef] [PubMed] [Google Scholar]
- R. Garg, L.G. Benedetti, M.B. Abera, H. Wang, M. Abba, M.G. Kazanietz. Protein kinase C and cancer: what we know and what we do not. Oncogene. 33(11) (2013) [Google Scholar]
- A.C. Newton. Protein kinase C: structure, function, and regulation. The Journal of biological chemistry. 270(48):28495–8 (1995) [CrossRef] [PubMed] [Google Scholar]
- C. Giorgi, C. Agnoletto, C. Baldini, A. Bononi, M. Bonora, S. Marchi, et al. Redox control of protein kinase C: cell- and disease-specific aspects. Antioxidants & redox signaling. 13(7):1051–1085 (2010) [CrossRef] [PubMed] [Google Scholar]
- A.C. Newton, J. Brognard. Reversing the Paradigm: Protein Kinase C as a Tumor Suppressor. Trends in pharmacological sciences (Regular ed). 38(5):438–447 (2017) [CrossRef] [Google Scholar]
- A. Basu, D. Pal. Two faces of protein kinase C5: the contrasting roles of PKC5 in cell survival and cell death. TheScientificWorld. 10:2272–84 (2010) [CrossRef] [Google Scholar]
- A.S. Clark, K.A. West, P.M. Blumberg, P.A. Dennis. Altered protein kinase C (PKC) isoforms in non-small cell lung cancer cells: PKC5 promotes cellular survival and chemotherapeutic resistance. Cancer research (Chicago, 1ll). 63(4):780–786 (2003) [Google Scholar]
- B.A. Teicher. Protein kinase C as a therapeutic target. Clinical cancer research. 12(18):5336–5345 (2006) [CrossRef] [Google Scholar]
- K. Yoshida, H. Liu, Y. Miki. Protein kinase C delta regulates Ser46 phosphorylation of p53 tumor suppressor in the apoptotic response to DNA damage. The Journal of biological chemistry. 281(9):5734–5740 (2006) [CrossRef] [PubMed] [Google Scholar]
- J. Gao, B.A. Aksoy, U. Dogrusoz, G. Dresdner, B. Gross, S.O. Sumer, et al. Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal. Science signaling. 6(269):p11-pl (2013) [CrossRef] [Google Scholar]
- G. Zhang, M.G. Kazanietz, P.M. Blumberg, J.H. Hurley. Crystal structure of the Cys2 activator-binding domain of protein kinase C5 in complex with phorbol ester. Cell (Cambridge). 81(6):917–924 (1995) [CrossRef] [Google Scholar]
- J. Das, G.M. Rahman. C1 Domains: Structure and Ligand-Binding Properties. Chemical reviews. 114(24):12108–31 (2014) [CrossRef] [PubMed] [Google Scholar]
- M.J. Humphries, A.M. Ohm, J. Schaack, T.S. Adwan, M.E. Reyland. Tyrosine phosphorylation regulates nuclear translocation of PKC5. Oncogene. 27(21):3045–3053 (2008) [CrossRef] [PubMed] [Google Scholar]
- W. Lu, H.-K. Lee, C. Xiang, S. Finniss, C. Brodie. The phosphorylation of tyrosine 332 is necessary for the caspase 3-dependent cleavage of PKC5 and the regulation of cell apoptosis. Cellular signalling. 19(10):2165–2173 (2007) [CrossRef] [PubMed] [Google Scholar]
- J. Gong, M. Park, S.F. Steinberg. Cleavage Alters the Molecular Determinants of Protein Kinase C-5 Catalytic Activity. Molecular and cellular biology. 37(20) (2017) [CrossRef] [Google Scholar]
- S.F. Steinberg. Cardiac actions of protein kinase C isoforms. Physiology (Bethesda, Md). 27(3):130–139 (2012) [Google Scholar]
- J. Gong, Y. Yao, P. Zhang, B. Udayasuryan, E.V. Komissarova, J. Chen, et al. The C2 Domain and Altered ATP-Binding Loop Phosphorylation at Ser359 Mediate the Redox-Dependent Increase in Protein Kinase C-5 Activity. Molecular and cellular biology. 35(10):1727–1740 (2015) [CrossRef] [PubMed] [Google Scholar]
- S.F. Steinberg. Structural Basis of Protein Kinase C Isoform Function. Physiological Reviews. 88(4):1341–1378 (2008) [CrossRef] [PubMed] [Google Scholar]
- V. Modi, R.L. Dunbrack. Defining a new nomenclature for the structures of active and inactive kinases. Proceedings of the National Academy of Sciences - PNAS. 116(14):6818–6827 (2019) [CrossRef] [Google Scholar]
- Y. Liu, N.V. Belkina, C. Graham, S. Shaw. Independence of protein kinase C-delta activity from activation loop phosphorylation: structural basis and altered functions in cells. The Journal of biological chemistry. 281(17):12102–11 (2006) [CrossRef] [PubMed] [Google Scholar]
- A.C. Newton. Protein kinase C: perfectly balanced. Critical reviews in biochemistry and molecular biology. 53(2):208–230 (2018) [CrossRef] [PubMed] [Google Scholar]
- G. Perletti, E. Marras, D. Dondi, D. Osti, T. Congiu, R. Ferrarese, et al. p21Waf1/Cip1 and p53 are downstream effectors of protein kinase C delta in tumor suppression and differentiation in human colon cancer cells. International journal of cancer. 113(1):42–53 (2005) [CrossRef] [PubMed] [Google Scholar]
- T. Abbas, D. White, L. Hui, K. Yoshida, D.A. Foster, J. Bargonetti. Inhibition of human p53 basal transcription by down-regulation of protein kinase Cdelta. The Journal of biological chemistry. 279(11):9970 (2004) [CrossRef] [PubMed] [Google Scholar]
- L. Hanshao, L. Zheng-Guang, M. Yoshio, Y. Kiyotsugu. Protein Kinase C 5 Induces Transcription of the TP53 Tumor Suppressor Gene by Controlling Death-Promoting Factor Btf in the Apoptotic Response to DNA Damage. Molecular and Cellular Biology. 27(24):8480–8491 (2007) [CrossRef] [PubMed] [Google Scholar]
- C.M. Barrett, F.L. Lewis, J.B. Roaten, T.W. Sweatman, M. Israel, J.L. Cleveland, et al. Novel extranuclear-targeted anthracyclines override the antiapoptotic functions of Bcl-2 and target protein kinase C pathways to induce apoptosis. Molecular cancer therapeutics. 1(7):469–481 (2002) [PubMed] [Google Scholar]
- U.M. Moll, O. Petrenko. The MDM2-p53 Interaction. Molecular Cancer Research. 1(14):1001–1008 (2003) [Google Scholar]
- S.-J. Lee, D.-C. Kim, B.-H. Choi, H. Ha, K.-T. Kim. Regulation of p53 by activated protein kinase C-delta during nitric oxide-induced dopaminergic cell death. The Journal of biological chemistry. 281(4):2215–2224 (2006) [CrossRef] [PubMed] [Google Scholar]
- L. Feng, M. Hollstein, Y. Xu. Ser46 Phosphorylation Regulates p53-Dependent Apoptosis and Replicative Senescence. Cell cycle (Georgetown, Tex). 5(23):2812–2819 (2006) [CrossRef] [Google Scholar]
- J. Shahbazi, R. Lock, T. Liu. Tumor Protein 53-Induced Nuclear Protein 1 Enhances p53 Function and Represses Tumorigenesis. Frontiers in genetics. 4:80- (2013) [CrossRef] [PubMed] [Google Scholar]
- K. Shinji, K. Ushio, T. Yoshihide, H. Tony. Nuclear Translocation of Caspase-3 Is Dependent on Its Proteolytic Activation and Recognition of a Substrate-like Protein(s). The Journal of biological chemistry. 280(2):857–860 (2005) [CrossRef] [PubMed] [Google Scholar]
- M.B. Zeisel, P. Dhawan, T.F. Baumert. Tight junction proteins in gastrointestinal and liver disease. Gut. 68(3):547–561 (2019) [CrossRef] [PubMed] [Google Scholar]
- E. Salvador, M. Burek, C.Y. Förster. Tight Junctions and the Tumor Microenvironment. Current pathobiology reports. 4(3):135–145 (2016) [CrossRef] [PubMed] [Google Scholar]
- W.G. Jiang, A.J. Sanders, M. Katoh, H. Ungefroren, F. Gieseler, M. Prince, et al. Tissue invasion and metastasis: Molecular, biological and clinical perspectives. Seminars in cancer biology. 35:S244–S75 (2015) [CrossRef] [PubMed] [Google Scholar]
- Y. James, N. Anthony, M. Joshua, C. Isabel, C.S. Jaekyung, T.W. Roger, et al. Bryostatin-1 enhances barrier function in T84 epithelia through PKC-dependent regulation of tight junction proteins. American Journal of Physiology - Cell Physiology. 285(2):300–309 (2003) [CrossRef] [Google Scholar]
- M.B. Resnick, M. Gavilanez, E. Newton, T. Konkin, B. Bhattacharya, D.E. Britt, et al. Claudin expression in gastric adenocarcinomas: a tissue microarray study with prognostic correlation. Human pathology. 36(8):886–892 (2005) [CrossRef] [PubMed] [Google Scholar]
- K. Umeda, J. Ikenouchi, S. Katahira-Tayama, K. Furuse, H. Sasaki, M. Nakayama, et al. ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell (Cambridge). 126(4):751 (2006) [CrossRef] [Google Scholar]
- A.S. Fanning, J.M. Anderson. Zonula Occludens-1 and -2 Are Cytosolic Scaffolds That Regulate the Assembly of Cellular Junctions. Annals of the New York Academy of Sciences. 1165(1):113–120 (2009) [CrossRef] [PubMed] [Google Scholar]
- M.F. Lye, A.S. Fanning, Y. Su, J.M. Anderson, A. Lavie. Insights into regulated ligand binding sites from the structure of ZO-1 Src homology 3-guanylate kinase module. The Journal of biological chemistry. 285(18):13907–17 (2010) [CrossRef] [PubMed] [Google Scholar]
- E. Cario, G. Gerken, D.K. Podolsky. Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C. Gastroenterology (New York, NY 1943). 127(1):224–238 (2004) [Google Scholar]
- A.S. Fanning, B.P. Little, C. Rahner, D. Utepbergenov, Z. Walther, J.M. Anderson. The unique-5 and -6 motifs of ZO-1 regulate tight junction strand localization and scaffolding properties. Molecular biology of the cell. 18(3):721–731 (2007) [CrossRef] [PubMed] [Google Scholar]
- L.V. Mauro, V.C. Grossoni, A.J. Urtreger, C. Yang, L.L. Colombo, A. Morandi, et al. PKC Delta (PKCdelta) promotes tumoral progression of human ductal pancreatic cancer. Pancreas. 39(1):e31–e41 (2010) [CrossRef] [PubMed] [Google Scholar]
- G.P. Sorescu, L.W. Forman, D.V. Faller. Effect of inhibition of protein kinase C delta (PKC5) on pancreatic cancer cells. Journal of clinical oncology. 30(15_suppl):e14591-e (2012) [CrossRef] [Google Scholar]
- J. Song, Y. Zhou, Y. Gong, H. Liu, L. Tang. Rottlerin promotes autophagy and apoptosis in gastric cancer cell lines. Molecular medicine reports. 18(3):2905–2913 (2018) [PubMed] [Google Scholar]
- S.P. Davies, H. Reddy, M. Caivano, P. Cohen. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochemical journal. 351(Pt 1):95–105 (2000) [CrossRef] [Google Scholar]
- D. Fabbro, E. Buchdunger, J. Wood, J. Mestan, F. Hofmann, S. Ferrari, et al. Inhibitors of Protein Kinases: CGP 41251, a Protein Kinase Inhibitor with Potential as an Anticancer Agent. Pharmacology & therapeutics (Oxford). 82(2):293–301 (1999) [CrossRef] [Google Scholar]
- D. Toullec, P. Pianetti, H. Coste, P. Bellevergue, T. Grand-Perret, M. Ajakane, et al. The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. The Journal of biological chemistry. 266(24):15771–81 (1991) [CrossRef] [PubMed] [Google Scholar]
- M.J. Atten, E. Godoy-Romero, B.M. Attar, T. Milson, M. Zopel, O. Holian. Resveratrol regulates cellular PKC a and 5 to inhibit growth and induce apoptosis in gastric cancer cells. Investigational new drugs. 23(2):111–119 (2005) [CrossRef] [PubMed] [Google Scholar]
- V.V. Ternovoi, D.T. Curiel, B.F. Smith, G.P. Siegal. Adenovirus-mediated p53 tumor suppressor gene therapy of osteosarcoma. Laboratory investigation. 86(8):748–766 (2006) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.