Open Access
Issue
E3S Web Conf.
Volume 271, 2021
2021 2nd International Academic Conference on Energy Conservation, Environmental Protection and Energy Science (ICEPE 2021)
Article Number 03018
Number of page(s) 7
Section Research on Energy Chemistry and Chemical Simulation Performance
DOI https://doi.org/10.1051/e3sconf/202127103018
Published online 15 June 2021
  1. Lane C.A., Hardy J., Schott J.M. Alzheimer's disease. Eur J Neurol. 2018 Jan;25(1):59–70. doi: 10.1111/ene.13439. Epub 2017 Oct 19. PMID: 28872215. [Google Scholar]
  2. Moreira P.I., Siedlak S.L., Aliev G., Zhu X., Cash A.D., Smith M.A., Perry G. Oxidative stress mechanisms and potential therapeutics in Alzheimer disease. J Neural Transm (Vienna). 2005 Jul;112(7):921–932. doi: 10.1007/s00702-004-0242-8. Epub 2004 Dec 7. PMID: 15583960. [CrossRef] [PubMed] [Google Scholar]
  3. Dosunmu R., Wu J., Basha M.R., Zawia N.H. Environmental and dietary risk factors in Alzheimer's disease. Expert Rev Neurother. 2007 Jul;7(7):887–900. doi: 10.1586/14737175.7.7.887. PMID: 17610395. [CrossRef] [PubMed] [Google Scholar]
  4. Van Gastel J., Leysen H., Boddaert J., van Genechten L., Luttrell L.M., Martin B., Maudsley S. Aging-related modifications to G protein-coupled receptor signaling diversity. Pharmacol Ther. 2020 Dec 11:107793. doi: 10.1016/j.pharmthera.2020.107793. Epub ahead of print. PMID: 33316288. [PubMed] [Google Scholar]
  5. Li J., Du Q., Li N., Du S., Sun Z. Alpiniae oxyphyllae Fructus and Alzheimer's disease: An update and current perspective on this traditional Chinese medicine. Biomed Pharmacother. 2020 Dec 29;135:111167. doi: 10.1016/j.biopha.2020.111167. Epub ahead of print. PMID: 33383373. [CrossRef] [PubMed] [Google Scholar]
  6. Marucci G., Buccioni M., Ben D.D., Lambertucci C., Volpini R., Amenta F. Efficacy of acetylcholinesterase inhibitors in Alzheimer's disease. Neuropharmacology. 2020 Oct 6:108352. doi: 10.1016/j.neuropharm.2020.108352. Epub ahead of print. PMID: 33035532. [PubMed] [Google Scholar]
  7. Singh R., Sadiq N.M. Cholinesterase Inhibitors. 2020 May 16. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan-. PMID:31335056. [Google Scholar]
  8. Bautista-Aguilera Ö.M., Ismaili L., Iriepa I., Diez-Iriepa D., Chabchoub F., Marco-Contelles J., Pérez M. Tacrines as Therapeutic Agents for Alzheimer's Disease. V. Recent Developments. Chem Rec. 2020 Nov 10. doi: 10.1002/tcr.202000107. Epub ahead of print. PMID: 33169934. [Google Scholar]
  9. Liu J., Chang L., Song Y., Li H., Wu Y. The Role of NMDA Receptors in Alzheimer's Disease. Front Neurosci. 2019 Feb 8;13:43. doi: 10.3389/fnins.2019.00043. PMID: 30800052; PMCID: PMC6375899. [CrossRef] [PubMed] [Google Scholar]
  10. Uddin M.S., Al Mamun A., Kabir M.T., Ashraf G.M., Bin-Jumah M.N., Abdel-Daim M.M. Multi-Target Drug Candidates for Multifactorial Alzheimer's Disease: AChE and NMDAR as Molecular Targets. Mol Neurobiol. 2021 Jan;58(1):281–303. doi: 10.1007/s12035-020-02116-9. Epub 2020 Sep 15. PMID: 32935230. [CrossRef] [PubMed] [Google Scholar]
  11. Agatonovic-Kustrin S., Kettle C., Morton D.W. A molecular approach in drug development for Alzheimer's disease. Biomed Pharmacother. 2018 Oct;106:553–565. doi: 10.1016/j.biopha.2018.06.147. Epub 2018 Jul 11. PMID: 29990843. [CrossRef] [PubMed] [Google Scholar]
  12. Geerts H., Grossberg G.T. Pharmacology of acetylcholinesterase inhibitors and N-methyl-D-aspartate receptors for combination therapy in the treatment of Alzheimer's disease. J Clin Pharmacol. 2006 Jul;46(7 Suppl 1):8S–16S. doi: 10.1177/0091270006288734. PMID: 16809810. [CrossRef] [PubMed] [Google Scholar]
  13. Daneman R., Prat A. The blood-brain barrier. Cold Spring Harb Perspect Biol. 2015 Jan 5;7(1):a020412. doi: 10.1101/cshperspect.a020412. PMID: 25561720; PMCID: PMC4292164. [CrossRef] [PubMed] [Google Scholar]
  14. Ross C., Taylor M., Fullwood N., Allsop D. Liposome delivery systems for the treatment of Alzheimer's disease. Int J Nanomedicine. 2018 Dec 12;13:8507–8522. doi: 10.2147/IJN.S183117. PMID: 30587974;PMCID: PMC6296687. [CrossRef] [PubMed] [Google Scholar]
  15. Gobbi M., Re F., Canovi M., Beeg M., Gregori M., Sesana S., Sonnino S., Brogioli D., Musicanti C., Gasco P., Salmona M., Masserini M.E. Lipid-based nanoparticles with high binding affinity for amyloid-beta1-42 peptide. Biomaterials. 2010 Sep;31(25):6519–29. doi: 10.1016/j.biomaterials.2010.04.044. PMID:20553982. [CrossRef] [PubMed] [Google Scholar]
  16. Zhao N., Liu C.C., Qiao W., Bu G. Apolipoprotein E, Receptors, and Modulation of Alzheimer's Disease. Biol Psychiatry. 2018 Feb 15;83(4):347–357. doi: 10.1016/j.biopsych.2017.03.003. Epub 2017 Mar 14. PMID: 28434655; PMCID: PMC5599322. [CrossRef] [PubMed] [Google Scholar]
  17. Balducci C., Mancini S., Minniti S., La Vitola P., Zotti M., Sancini G., Mauri M., Cagnotto A., Colombo L., Fiordaliso F., Grigoli E., Salmona M., Snellman A., Haaparanta-Solin M., Forloni G., Masserini M., Re, F. Multifunctional liposomes reduce brain ß-amyloid burden and ameliorate memory impairment in Alzheimer's disease mouse models. J Neurosci. 2014 Oct 15;34(42):14022–31. doi: 10.1523/JNEUROSCI. 0284-14.2014. PMID: 25319699; PMCID: PMC4198543. [CrossRef] [PubMed] [Google Scholar]
  18. Serrano-Pozo A., Das S., Hyman B.T. APOE and Alzheimer's disease: advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol. 2021 Jan;20(1):68–80. doi: 10.1016/S1474-4422(20)30412-9. PMID: 33340485. [CrossRef] [PubMed] [Google Scholar]
  19. Arora S., Layek B., Singh J. Design and Validation of Liposomal ApoE2 Gene Delivery System to Evade Blood-Brain Barrier for Effective Treatment of Alzheimer's Disease. Mol Pharm. 2020 Sep 16. doi: 10.1021/acs.molpharmaceut.0c00461. Epub ahead of print. PMID: 32787268. [Google Scholar]
  20. Wilhelmus M.M., de Waal R.M., Verbeek M.M. Heat shock proteins and amateur chaperones in amyloid-Beta accumulation and clearance in Alzheimer's disease. Mol Neurobiol. 2007 Jun;35(3):203–216. doi: 10.1007/s12035-007-0029-7. PMID: 17917109; PMCID: PMC2039847. [CrossRef] [PubMed] [Google Scholar]
  21. Martin-Pena A., Rincön-Limas D.E., Fernandez-Fünez P. Engineered Hsp70 chaperones prevent Aß42-induced memory impairments in a Drosophila model of Alzheimer's disease. Sci Rep. 2018 Jul 2;8(1):9915. doi: 10.1038/s41598-018-28341-w. PMID: 29967544; PMCID: PMC6028656. [CrossRef] [PubMed] [Google Scholar]
  22. Repalli J., Meruelo D. Screening strategies to identify HSP70 modulators to treat Alzheimer's disease. Drug Des Devel Ther. 2015 Jan 7;9:321–31. doi: 10.2147/DDDT.S72165. PMID: 25609918; PMCID: PMC4294646. [CrossRef] [PubMed] [Google Scholar]
  23. Li X., Shao H., Taylor I.R., Gestwicki J.E. Targeting Allosteric Control Mechanisms in Heat Shock Protein 70 (Hsp70). Curr Top Med Chem. 2016;16(25):2729–40. doi: 10.2174/1568026616666160413140911. PMID: 27072701; PMCID: PMC5502483. [CrossRef] [PubMed] [Google Scholar]
  24. Abisambra J., Jinwal U.K., Miyata Y., Rogers J., Blair L., Li X., Seguin S.P., Wang L., Jin Y., Bacon J., Brady S., Cockman M., Guidi C., Zhang J., Koren J., Young Z.T., Atkins C.A., Zhang B., Lawson L.Y., Weeber E.J., Brodsky J.L., Gestwicki J.E., Dickey C.A. Allosteric heat shock protein 70 inhibitors rapidly rescue synaptic plasticity deficits by reducing aberrant tau. Biol Psychiatry. 2013 Sep 1;74(5):367–374. doi: 10.1016/j.biopsych.2013.02.027. Epub 2013 Apr 19. PMID: 23607970; PMCID: PMC3740016. [CrossRef] [PubMed] [Google Scholar]
  25. Bohush A., Bieganowski P., Filipek A. Hsp90 and Its Co-Chaperones in Neurodegenerative Diseases. Int J Mol Sci. 2019 Oct 9;20(20):4976. doi: 10.3390/ijms20204976. PMID: 31600883; PMCID: PMC6834326. [CrossRef] [Google Scholar]
  26. Luo W., Rodina A., Chiosis G. Heat shock protein 90: translation from cancer to Alzheimer's disease treatment? BMC Neurosci. 2008 Dec 3;9 Suppl 2(Suppl 2):S7. doi: 10.1186/1471-2202-9-S2-S7. PMID: 19090995; PMCID: PMC2604891. [CrossRef] [PubMed] [Google Scholar]
  27. Wang B., Liu Y., Huang L., Chen J., Li J.J., Wang R., Kim E., Chen Y., Justicia C., Sakata K., Chen H., Planas A., Ostrom R.S., Li W., Yang G., McDonald M.P., Chen R., Heck D.H., Liao F.F. A CNS-permeable Hsp90 inhibitor rescues synaptic dysfunction and memory loss in APP-overexpressing Alzheimer's mouse model via an HSF1-mediated mechanism. Mol Psychiatry. 2017 Jul;22(7):990–1001. doi: 10.1038/mp.2016.104. Epub 2016 Jul 26. PMID: 27457810; PMCID: PMC5323357. [CrossRef] [PubMed] [Google Scholar]
  28. Sultan M.T., Butt M.S., Qayyum M.M., Suleria H.A. Immunity: plants as effective mediators. Crit Rev Food Sci Nutr. 2014;54(10):1298–308. doi: 10.1080/10408398.2011.633249. PMID: 24564587. [CrossRef] [PubMed] [Google Scholar]
  29. Butt M.S., Sultan M.T., Butt M.S., Iqbal J. Garlic: nature's protection against physiological threats. Crit Rev Food Sci Nutr. 2009 Jun;49(6):538–551. doi: 10.1080/10408390802145344. PMID: 19484634. [CrossRef] [PubMed] [Google Scholar]
  30. Borlinghaus J., Albrecht F., Gruhlke M.C., Nwachukwu I.D., Slusarenko A.J. Allicin: chemistry and biological properties. Molecules. 2014 Aug 19;19(8):12591–618. doi: 10.3390/molecules190812591. PMID: 25153873; PMCID: PMC6271412. [CrossRef] [PubMed] [Google Scholar]
  31. Kumar R., Chhatwal S., Arora S., Sharma S., Singh J., Singh N., Bhandari V., Khurana A. Antihyperglycemic, antihyperlipidemic, anti-inflammatory and adenosine deaminase- lowering effects of garlic in patients with type 2 diabetes mellitus with obesity. Diabetes Metab Syndr Obes. 2013;6:49–56. doi: 10.2147/DMSO.S38888. Epub 2013 Jan 19. PMID: 23378779; PMCID: PMC3554227. [CrossRef] [PubMed] [Google Scholar]
  32. Zhu J.W., Chen T., Guan J., Liu W.B., Liu J. Neuroprotective effects of allicin on spinal cord ischemia-reperfusion injury via improvement of mitochondrial function in rabbits. Neurochem Int. 2012 Oct;61(5):640–648. doi: 10.1016/j.neuint.2012.06.021. Epub 2012 Jun 29. PMID: 22750272. [CrossRef] [PubMed] [Google Scholar]
  33. Lin G.H., Lee Y.J., Choi D.Y., Han S.B., Jung J.K., Hwang B.Y., Moon D.C., Kim Y., Lee M.K., Oh K.W., Jeong H.S., Leem J.Y., Shin H.K., Lee J.H., Hong J.T. Anti-amyloidogenic effect of thiacremonone through anti-inflamation in vitro and in vivo models. J Alzheimers Dis. 2012;29(3):659–76. doi: 10.3233/JAD-2012-111709. PMID: 22297647. [CrossRef] [PubMed] [Google Scholar]
  34. Arunkumar R., Sharmila G., Elumalai P., Senthilkumar K., Banudevi S., Gunadharini D.N., Benson C.S., Daisy P., Arunakaran J. Effect of diallyl disulfide on insulin-like growth factor signaling molecules involved in cell survival and proliferation of human prostate cancer cells in vitro and in silico approach through docking analysis. Phytomedicine. 2012 Jul 15;19(10):912–923. doi: 10.1016/j.phymed.2012.04.009. Epub 2012 Jun 26. PMID: 22739413. [CrossRef] [PubMed] [Google Scholar]
  35. Lin X., Yu S., Chen Y., Wu J., Zhao J., Zhao Y. Neuroprotective effects of diallyl sulfide against transient focal cerebral ischemia via anti-apoptosis in rats. Neurol Res. 2012 Jan;34(1):32–37. doi: 10.1179/1743132811Y.0000000054. PMID: 22196859. [CrossRef] [PubMed] [Google Scholar]
  36. Chauhan N.B., Sandoval J. Amelioration of early cognitive deficits by aged garlic extract in Alzheimer's transgenic mice. Phytother Res. 2007 Jul;21(7):629–640. doi: 10.1002/ptr.2122. PMID: 17380553. [CrossRef] [PubMed] [Google Scholar]
  37. Skrzypek A., Matysiak J., Karpihska M., Czarnecka K., Krecisz P., Stary D., Kukulowicz J., Paw B., Bajda M., Szymahski P., Niewiadomy A. Biological evaluation and molecular docking of novel 1,3,4-thiadiazole-resorcinol conjugates as multifunctional cholinesterases inhibitors. Bioorg Chem. 2021 Jan 5;107:104617. doi: 10.1016/j.bioorg.2020.104617. Epub ahead of print. PMID: 33444983. [CrossRef] [PubMed] [Google Scholar]
  38. Garcia-Alloza M., Borrelli L.A., Rozkalne A., Hyman B.T., Bacskai B.J. Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. J Neurochem. 2007 Aug;102(4):1095–1104. doi: 10.1111/j.1471-4159.2007.04613.x. Epub 2007 Apr 30. PMID: 17472706. [CrossRef] [PubMed] [Google Scholar]
  39. Park S.Y., Kim D.S. Discovery of natural products from Curcuma longa that protect cells from beta-amyloid insult: a drug discovery effort against Alzheimer's disease. J Nat Prod. 2002 Sep;65(9):1227–1231. doi: 10.1021/np010039x. PMID: 12350137. [CrossRef] [PubMed] [Google Scholar]
  40. Biswas S.K., McClure D., Jimenez L.A., Megson I.L., Rahman I. Curcumin induces glutathione biosynthesis and inhibits NF-kappaB activation and interleukin-8 release in alveolar epithelial cells: mechanism of free radical scavenging activity. Antioxid Redox Signal. 2005 Jan-Feb;7(1-2):32–41. doi: 10.1089/ars.2005.7.32. PMID: 15650394. [CrossRef] [PubMed] [Google Scholar]
  41. Christensen L.P. Ginsenosides chemistry, biosynthesis, analysis, and potential health effects. Adv Food Nutr Res. 2009;55:1–99. doi: 10.1016/S1043-4526(08)00401-4. PMID: 18772102. [PubMed] [Google Scholar]
  42. Vassar R., Bennett B.D., Babu-Khan S., Kahn S., Mendiaz E.A., Denis P., Teplow D.B., Ross S., Amarante P., Loeloff R., Luo Y., Fisher S., Fuller J., Edenson S., Lile J., Jarosinski M.A., Biere A.L., Curran E., Burgess T., Louis J.C., Collins F., Treanor J., Rogers G., Citron M. Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science. 1999 Oct 22;286(5440):735–741. doi: 10.1126/science. 286.5440.735. PMID: 10531052. [CrossRef] [PubMed] [Google Scholar]
  43. Ikonomovic M.D., Mufson E.J., Wuu J., Bennett D.A., De Kosky S.T. Reduction of choline acetyltransferase activity in primary visual cortex in mild to moderate Alzheimer's disease. Arch Neurol. 2005 Mar;62(3):425–430. doi: 10.1001/archneur.62.3.425. PMID: 15767507. [CrossRef] [PubMed] [Google Scholar]
  44. Kim S.F., Huri D.A., Snyder S.H. Inducible nitric oxide synthase binds, S-nitrosylates, and activates cyclooxygenase-2. Science. 2005 Dec 23;310(5756): 1966–70. doi: 10.1126/science.1119407. PMID: 16373578. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.