Open Access
Issue
E3S Web Conf.
Volume 271, 2021
2021 2nd International Academic Conference on Energy Conservation, Environmental Protection and Energy Science (ICEPE 2021)
Article Number 03025
Number of page(s) 7
Section Research on Energy Chemistry and Chemical Simulation Performance
DOI https://doi.org/10.1051/e3sconf/202127103025
Published online 15 June 2021
  1. Koreth J., Schlenk R., Kopecky K.J., et al. Allogeneic stem cell transplantation for acute myeloid leukemia in first complete remission: systematic review and meta-analysis of prospective clinical trials [J]. JAMA, 2009, 301(22): 2349–2361. [CrossRef] [PubMed] [Google Scholar]
  2. Barrett A.J. Understanding and harnessing the graft-versus-leukaemia effect [J]. Br J Haematol, 2008, 142(6): 877–888. [CrossRef] [PubMed] [Google Scholar]
  3. Schreiber R.D., Old L.J., Smyth M.J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion [J]. Science, 2011, 331(6024): 1565–1570. [CrossRef] [PubMed] [Google Scholar]
  4. Barrett A.J., Le Blanc K. Immunotherapy prospects for acute myeloid leukaemia [J]. Clin Exp Immunol, 2010, 161(2): 223–232. [PubMed] [Google Scholar]
  5. Lion E., Willemen Y., Berneman Z.N., et al. Natural killer cell immune escape in acute myeloid leukemia [J]. Leukemia, 2012, 26(9): 2019–2026. [CrossRef] [PubMed] [Google Scholar]
  6. Stein E.M., Dinardo C.D., Pollyea D.A., et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia [J]. Blood, 2017, 130(6): 722–731. [CrossRef] [PubMed] [Google Scholar]
  7. Breems D.A., Van Putten W.L., Huijgens P.C., et al. Prognostic index for adult patients with acute myeloid leukemia in first relapse [J]. J Clin Oncol, 2005, 23(9): 1969–1978. [CrossRef] [PubMed] [Google Scholar]
  8. Stone R.M., Mandrekar S.J., Sanford B.L., et al. Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation [J]. N Engl J Med, 2017, 377(5): 454–464. [CrossRef] [PubMed] [Google Scholar]
  9. Di Stasi A., Jimenez A.M., Minagawa K., et al. Review of the Results of WT1 Peptide Vaccination Strategies for Myelodysplastic Syndromes and Acute Myeloid Leukemia from Nine Different Studies [J]. Front Immunol, 2015, 636. [PubMed] [Google Scholar]
  10. Keilholz U., Letsch A., Busse A., et al. A clinical and immunologic phase 2 trial of Wilms tumor gene product 1 (WT1) peptide vaccination in patients with AML and MDS [J]. Blood, 2009, 113(26): 6541–6548. [CrossRef] [PubMed] [Google Scholar]
  11. Padua R.A., Larghero J., Robin M., et al. PML-RARA-targeted DNA vaccine induces protective immunity in a mouse model of leukemia [J]. Nat Med, 2003, 9(11): 1413–1417. [CrossRef] [PubMed] [Google Scholar]
  12. Subklewe M., Geiger C., Lichtenegger F.S., et al. New generation dendritic cell vaccine for immunotherapy of acute myeloid leukemia [J]. Cancer Immunol Immunother, 2014, 63(10): 1093–1103. [CrossRef] [PubMed] [Google Scholar]
  13. van Tendeloo V.F., van de Velde A., Van Driessche A., et al. Induction of complete and molecular remissions in acute myeloid leukemia by Wilms' tumor 1 antigen-targeted dendritic cell vaccination [J]. Proc Natl Acad Sci U S.A., 2010, 107(31): 13824–13829. [CrossRef] [Google Scholar]
  14. Powles R., Balchin L., Fairley G.H., et al. Recognition of leukaemia cells as foreign before and after autoimmunization [J]. Br Med J, 1971, 1(5747): 486–489. [CrossRef] [PubMed] [Google Scholar]
  15. Melief C.J., van der Burg S.H. Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines [J]. Nat Rev Cancer, 2008, 8(5): 351–360. [CrossRef] [PubMed] [Google Scholar]
  16. Greiner J., Dohner H., Schmitt, M. Cancer vaccines for patients with acute myeloid leukemia--definition of leukemia-associated antigens and current clinical protocols targeting these antigens [J]. haematologica, 2006, 91(12): 1653–1661. [PubMed] [Google Scholar]
  17. Banchereau J., Steinman, R.M. Dendritic cells and the control of immunity [J]. Nature, 1998, 392(6673): 245–252. [CrossRef] [PubMed] [Google Scholar]
  18. Nim, Hoffmann J.M., Schmitt, M., et al. Progress of dendritic cell-based cancer vaccines for patients with hematological malignancies [J]. Expert Opin Biol Ther, 2016, 16(9): 1113–1123. [CrossRef] [PubMed] [Google Scholar]
  19. Dastmalchi F., Karachi A., Yang C., et al. Sarcosine promotes trafficking of dendritic cells and improves efficacy of anti-tumor dendritic cell vaccines via CXC chemokine family signaling [J]. J Immunother Cancer, 2019, 7(1): 321. [CrossRef] [PubMed] [Google Scholar]
  20. Pyzer A.R., Avigan D.E., Rosenblatt, J. Clinical trials of dendritic cell-based cancer vaccines in hematologic malignancies [J]. Human vaccines & immunotherapeutics, 2014, 10(11): 3125–3131. [CrossRef] [PubMed] [Google Scholar]
  21. Walker L.M., Burton, D.R. Passive immunotherapy of viral infections: 'super-antibodies' enter the fray [J]. Nat Rev Immunol, 2018, 18(5): 297–308. [CrossRef] [PubMed] [Google Scholar]
  22. Klasse P.J., Moore, J.P. Antibodies to SARS-CoV-2 and their potential for therapeutic passive immunization [J]. Elife, 2020, 9 [CrossRef] [PubMed] [Google Scholar]
  23. Köhler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity [J]. Nature, 1975, 256(5517): 495–497. [CrossRef] [PubMed] [Google Scholar]
  24. Saito Y., Kitamura H., Hijikata A., et al. Identification of Therapeutic Targets for Quiescent, Chemotherapy-Resistant Human Leukemia Stem Cells [J]. Science Translational Medicine, 2010, 2(17): 17ra19–17ra19. [CrossRef] [Google Scholar]
  25. Cao H., Crocker P.R. Evolution of CD33-related siglecs: regulating host immune functions and escaping pathogen exploitation? [J]. Immunology, 2011, 132(1): 18–26. [CrossRef] [PubMed] [Google Scholar]
  26. Crocker P.R., Mcmillan S.J., Richards H.E. CD33-related siglecs as potential modulators of inflammatory responses [J]. 2012, 1253(1): 102–111. [Google Scholar]
  27. Hauswirth A.W., Florian S., Printz D., et al. Expression of the target receptor CD33 in CD34+/CD38?/CD123+AML stem cells [J]. European Journal of Clinical Investigation, 2007, 37(1): 73–82. [CrossRef] [PubMed] [Google Scholar]
  28. Peiper S.C., Ashmun R.A., Look A.T. Molecular cloning, expression, and chromosomal localization of a human gene encoding the CD33 myeloid differentiation antigen [J]. 1988, [Google Scholar]
  29. Kung Sutherland M.S., Walter R.B., Jeffrey S.C., et al. SGN-CD33A: a novel CD33-targeting antibody-drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML [J]. Blood, 2013, 122(8): 1455–1463. [CrossRef] [PubMed] [Google Scholar]
  30. Krystal W.M., Walker R., Fishkin N., et al. IMGN779, a CD33-targeted antibody-drug conjugate (ADC) with a novel DNA-alkylating effector molecule, induces DNA damage, cell cycle arrest, and apoptosis in AML cells [M]. American Society of Hematology Washington, DC. 2015. [Google Scholar]
  31. Masarova L., Kantarjian H., Ravandi F., et al. Update on Immunotherapy in AML and MDS: Monoclonal Antibodies and Checkpoint Inhibitors Paving the Road for Clinical Practice [M]. Springer International Publishing. 2018: 97–116. [Google Scholar]
  32. Mahalleh M., Shabani M., Rayzan E., et al. Reinforcing the primary immunotherapy modulators against acute leukemia; monoclonal antibodies in AML [J]. Immunotherapy, 2019, 11(18): 1583–1600. [CrossRef] [PubMed] [Google Scholar]
  33. Walter, R. Antibody-based therapy of acute myeloid leukemia with gemtuzumab ozogamicin [J]. 2013, 18(4): 1311. [Google Scholar]
  34. Larson R.A., Sievers E.L., Stadtmauer E.A., et al. Final report of the efficacy and safety of gemtuzumab ozogamicin (Mylotarg) in patients with CD33-positive acute myeloid leukemia in first recurrence [J]. Cancer, 2005, 104(7): 1442–1452. [CrossRef] [PubMed] [Google Scholar]
  35. Sievers E.L., Larson R.A., Stadtmauer E.A., et al. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse [J]. Journal of Clinical Oncology, 2001, 19(13): 3244–3254. [CrossRef] [Google Scholar]
  36. Petersdorf S.H., Kopecky K.J., Slovak M., et al. A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia [J]. Blood, 2013, 121(24): 4854–4860. [CrossRef] [PubMed] [Google Scholar]
  37. Amadori S., Suciu S., Selleslag D., et al. Gemtuzumab Ozogamicin Versus Best Supportive Care in Older Patients With Newly Diagnosed Acute Myeloid Leukemia Unsuitable for Intensive Chemotherapy: Results of the Randomized Phase III EORTC-GIMEMA AML-19 Trial [J]. Journal of Clinical Oncology, 2016, 34(9): 972–979. [CrossRef] [Google Scholar]
  38. Bagley C.J., Woodcock J.M., Stomski F.C., et al. The structural and functional basis of cytokine receptor activation: lessons from the common ß subunit of the granulocyte-macrophage colony-stimulating factor, interleukin-3 (IL-3), and IL-5 receptors [J]. Blood, The Journal of the American Society of Hematology, 1997, 89(5): 1471–1482. [Google Scholar]
  39. Testa U., Riccioni R., Militi S., et al. Elevated expression of IL-3Ra in acute myelogenous leukemia is associated with enhanced blast proliferation, increased cellularity, and poor prognosis [J]. Blood, 2002, 100(8): 2980–2988. [CrossRef] [PubMed] [Google Scholar]
  40. Smith B.D., Roboz G.J., Walter R.B., et al. First-in man, phase 1 study of CSL362 (anti-IL3Ra/anti-CD123 monoclonal antibody) in patients with CD123+ acute myeloid leukemia (AML) in CR at high risk for early relapse [M]. American Society of Hematology Washington, DC. 2014. [Google Scholar]
  41. Romagne F., Andre P., Spee P., et al. Preclinical characterization of 1-7F9, a novel human anti-KIR receptor therapeutic antibody that augments natural killer-mediated killing of tumor cells [J]. Blood, 2009, 114(13): 2667–2677. [CrossRef] [PubMed] [Google Scholar]
  42. Frankel A.E., Ramage J., Kiser M., et al. Characterization of diphtheria fusion proteins targeted to the human interleukin-3 receptor [J]. Protein Engineering, Design and Selection, 2000, 13(8): 575–581. [CrossRef] [Google Scholar]
  43. Pemmaraju N., Sweet K.L., Lane A.A., et al. Results of pivotal phase 2 trial of SL-401 in patients with blastic plasmacytoid dendritic cell neoplasm (BPDCN) [J]. Blood, 2017, 130(Supplement 1): 1298–1298. [Google Scholar]
  44. John S., Chen H., Deng M., et al. A Novel Anti-LILRB4 CAR-T Cell for the Treatment of Monocytic AML [J]. Mol Ther, 2018, 26(10): 2487–2495. [CrossRef] [PubMed] [Google Scholar]
  45. Maus M.V., June C.H. Making Better Chimeric Antigen Receptors for Adoptive T-cell Therapy [J]. Clin Cancer Res, 2016, 22(8): 1875–1884. [CrossRef] [PubMed] [Google Scholar]
  46. Wang J., Chen S., Xiao W., et al. CAR-T cells targeting CLL-1 as an approach to treat acute myeloid leukemia [J]. Journal of Hematology & Oncology, 2018, 11(1): [PubMed] [Google Scholar]
  47. Park J.H., Riviere, I., Gonen, M., et al. Long-Term Follow-up of CD19 CAR Therapy in Acute Lymphoblastic Leukemia [J]. N Engl J Med, 2018, 378(5): 449–459. [CrossRef] [PubMed] [Google Scholar]
  48. Maude S.L., Laetsch T.W., Buechner J., et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia [J]. N Engl J Med, 2018, 378(5): 439–448. [CrossRef] [PubMed] [Google Scholar]
  49. Grupp S.A., Kalos M., Barrett D., et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia [J]. N Engl J Med, 2013, 368(16): 1509–1518. [CrossRef] [PubMed] [Google Scholar]
  50. Yang H., Bueso-Ramos C., Dinardo C., et al. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents [J]. Leukemia, 2014, 28(6): 1280–1288. [CrossRef] [PubMed] [Google Scholar]
  51. Labelle J.L., Hanke C.A., Blazar B.R., et al. Negative effect of CTLA-4 on induction of T-cell immunity in vivo to B7-1+, but not B7-2+, murine myelogenous leukemia [J]. Blood, The Journal of the American Society of Hematology, 2002, 99(6): 2146–2153. [Google Scholar]
  52. Zhong R.K., Loken M., Lane T.A., et al. CTLA-4 blockade by a human MAb enhances the capacity of AML-derived DC to induce T-cell responses against AML cells in an autologous culture system [J]. Cytotherapy, 2006, 8(1): 3–12. [CrossRef] [PubMed] [Google Scholar]
  53. Fevery S., Billiau A., Sprangers B., et al. CTLA-4 blockade in murine bone marrow chimeras induces a host-derived antileukemic effect without graft-versus-host disease [J]. Leukemia, 2007, 21(7): 1451–1459. [CrossRef] [PubMed] [Google Scholar]
  54. Okazaki T., Chikuma S., Iwai Y., et al. A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application [J]. Nature Immunology, 2013, 14(12): 1212–1218. [CrossRef] [PubMed] [Google Scholar]
  55. Masarova L., Kantarjian H., Garcia-Mannero G., et al. Harnessing the Immune System Against Leukemia: Monoclonal Antibodies and T [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.