Open Access
Issue |
E3S Web Conf.
Volume 271, 2021
2021 2nd International Academic Conference on Energy Conservation, Environmental Protection and Energy Science (ICEPE 2021)
|
|
---|---|---|
Article Number | 03064 | |
Number of page(s) | 5 | |
Section | Research on Energy Chemistry and Chemical Simulation Performance | |
DOI | https://doi.org/10.1051/e3sconf/202127103064 | |
Published online | 15 June 2021 |
- Bicknell K.A., Coxon C.H. and Brooks G.. Forced expression of the cyclin B1-CDC2 complex induces proliferation in adult rat cardiomyocytes. Biochem J. 2004;382:411–416. [CrossRef] [PubMed] [Google Scholar]
- Pasumarthi K.B., Nakajima H., Nakajima H.O., Soonpaa M.H. and Field L.J.. Targeted expression of cyclin D2 results in cardiomyocyte DNA synthesis and infarct regression in transgenic mice. Circ Res. 2005;96:110–118. [CrossRef] [PubMed] [Google Scholar]
- Soonpaa M.H., Koh G.Y., Pajak L., Jing S., Wang H., Franklin M.T., Kim K.K. and Field L.J.. Cyclin D1 overexpression promotes cardiomyocyte DNA synthesis and multinucleation in transgenic mice. J Clin Invest. 1997;99:2644–2654. [CrossRef] [PubMed] [Google Scholar]
- Chaudhry H.W., Dashoush N.H., Tang H., Zhang L., Wang X., Wu E.X. and Wolgemuth D.J.. Cyclin A2 mediates cardiomyocyte mitosis in the postmitotic myocardium. J Biol Chem. 2004;279:35858–66. [CrossRef] [PubMed] [Google Scholar]
- Foglia M.J. and Poss K.D.. Building and re-building the heart by cardiomyocyte proliferation. Development. 2016;143:729–740. [CrossRef] [PubMed] [Google Scholar]
- Flink I.L., Oana S., Maitra N., Bahl J.J. and Morkin E.. Changes in E2F complexes containing retinoblastoma protein family members and increased cyclin-dependent kinase inhibitor activities during terminal differentiation of cardiomyocytes. J Mol Cell Cardiol. 1998;30:563–578. [CrossRef] [PubMed] [Google Scholar]
- Ebelt H., Zhang Y., Kampke A., Xu J., Schlitt A., Buerke M., Muller-Werdan U., Werdan K. and Braun T.. E2F2 expression induces proliferation of terminally differentiated cardiomyocytes in vivo. Cardiovasc Res. 2008;80:219–226. [CrossRef] [PubMed] [Google Scholar]
- Ebelt H., Hufnagel N., Neuhaus P., Neuhaus H., Gajawada P., Simm A., Muller-Werdan U., Werdan K. and Braun T.. Divergent siblings: E2F2 and E2F4 butnot E2F1 and E2F3 induce DNA synthesis in cardiomyocytes without activation of apoptosis. Circ Res. 2005;96:509–517. [CrossRef] [PubMed] [Google Scholar]
- MacLellan W.R., Garcia A., Oh H., Frenkel P., Jordan M.C., Roos K.P. and Schneider M.D.. Overlapping roles of pocket proteins in the myocardium are unmasked by germ line deletion of p130 plus heart-specific deletion of Rb. Mol Cell Biol. 2005;25:2486–2497. [CrossRef] [PubMed] [Google Scholar]
- Mahmoud A.I., Kocabas F., Muralidhar S.A., Kimura W., Koura A.S., Thet S., Porrello E.R. and Sadek H.A.. Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature. 2013;497:249–253. [CrossRef] [PubMed] [Google Scholar]
- Snipelisky D., Chaudhry S.-P. and Stewart G.C.. The many faces of heart failure. Cardiac electrophysiology clinics. 2019;11:11–20. [CrossRef] [PubMed] [Google Scholar]
- Ponikowski P., Voors A.A., Anker S.D., Bueno H., Cleland J.G., Coats A.J., Falk V., Gonzalez-Juanatey J.R., Harjola V.P. and Jankowska E.A. 2016 EsC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. European journal of heart failure. 2016;18:891–975. [CrossRef] [PubMed] [Google Scholar]
- Hunter J.J. and Chien K.R.. Signaling pathways for cardiac hypertrophy and failure. New England Journal of Medicine. 1999;341:1276–1283. [CrossRef] [Google Scholar]
- Baartscheer A., Schumacher C., Belterman C., Coronel R. and Fiolet J.. [Na+] i and the driving force of the Na+/Ca2+-exchanger in heart failure. Cardiovascular research. 2003;57:986–995. [CrossRef] [PubMed] [Google Scholar]
- Eisner D.A., Caldwell J.L., Kistamas K. and Trafford A.W.. Calcium and excitation-contraction coupling in the heart. Circulation research. 2017;121:181–195. [Google Scholar]
- Bers D.M.. Altered cardiac myocyte Ca regulation in heart failure. Physiology. 2006;21:380–387. [CrossRef] [Google Scholar]
- Bers D.M.. Cardiac excitation-contraction coupling. Nature. 2002;415:198. [Google Scholar]
- Maier L.S., Zhang T., Chen L., DeSantiago J., Brown J.H. and Bers D.M.. Transgenic CaMKIISC overexpression uniquely alters cardiac myocyte Ca2+ handling: reduced SR Ca2+ load and activated SR Ca2+ release. Circulation research. 2003;92:904–911. [CrossRef] [PubMed] [Google Scholar]
- Ai X., Curran J.W., Shannon T.R., Bers D.M. and Pogwizd S.M.. Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circulation research. 2005;97:1314–1322. [CrossRef] [PubMed] [Google Scholar]
- Jiang M.T., Lokuta A.J., Farrell E.F., Wolff M.R., Haworth R.A. and Valdivia H.C.H.. Abnormal Ca2+ release, but normal ryanodine receptors, in canine and human heart failure. Circulation research. 2002;91:1015–1022. [Google Scholar]
- Bers D.M.. Macromolecular complexes regulating cardiac ryanodine receptor function. Journal of molecular and cellular cardiology. 2004;37:417–429. [CrossRef] [PubMed] [Google Scholar]
- Bossuyt J., Ai X., Moorman R., Pogwizd S. and Bers D.. Altered phospholemman (PLM) expression and phosphorylation in a non-ischemic, arrhythmogenic rabbit heart failure model. Circ Res. 2005;97:558–565. [CrossRef] [PubMed] [Google Scholar]
- Sweadner K.J. and Rael E.. The FXYD gene family of small ion transport regulators or channels: cDNA sequence, protein signature sequence, and expression. Genomics. 2000;68:41–56. [CrossRef] [PubMed] [Google Scholar]
- Sah R., Ramirez R.J., Oudit G.Y., Gidrewicz D., Trivieri M.G., Zobel C. and Backx P.H.. Regulation of cardiac excitation-contraction coupling by action potential repolarization: role of the transient outward potassium current (Ito). The Journal of physiology. 2003;546:5–18. [CrossRef] [PubMed] [Google Scholar]
- Sweet M.E., Cocciolo A., Slavov D., Jones K.L., Sweet J.R., Graw S.L., Reece T.B., Ambardekar A.V., Bristow M.R., Mestroni L. and Taylor M.R.G.. Transcriptome analysis of human heart failure reveals dysregulated cell adhesion in dilated cardiomyopathy and activated immune pathways in ischemic heart failure. BMC Genomics. 2018;19:812. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.