Open Access
Issue |
E3S Web Conf.
Volume 271, 2021
2021 2nd International Academic Conference on Energy Conservation, Environmental Protection and Energy Science (ICEPE 2021)
|
|
---|---|---|
Article Number | 03065 | |
Number of page(s) | 6 | |
Section | Research on Energy Chemistry and Chemical Simulation Performance | |
DOI | https://doi.org/10.1051/e3sconf/202127103065 | |
Published online | 15 June 2021 |
- Curran, K.J., H.J. Pegram, and R.J. Brentjens, Chimeric antigen receptors for T cell immunotherapy: current understanding and future directions. J Gene Med, 2012. 14(6): p. 405–415. [CrossRef] [PubMed] [Google Scholar]
- Haji-Fatahaliha, M., et al., CAR-modified T-cell therapy for cancer: an updated review. Artif Cells Nanomed Biotechnol, 2016. 44(6): p. 1339–1349. [CrossRef] [PubMed] [Google Scholar]
- Pettitt, D., et al., CAR-T Cells: A Systematic Review and Mixed Methods Analysis of the Clinical Trial Landscape. Molecular Therapy, 2018. 26(2): p. 342–353. [CrossRef] [Google Scholar]
- Khalil, D.N., et al., The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nature Reviews Clinical Oncology, 2016. 13(5): p. 273–290. [CrossRef] [PubMed] [Google Scholar]
- Subklewe, M., M. von Bergwelt-Baildon, and A. Humpe, Chimeric Antigen Receptor T Cells: A Race to Revolutionize Cancer Therapy. Transfus Med Hemother, 2019. 46(1): p. 15–24. [CrossRef] [PubMed] [Google Scholar]
- van der Stegen, S.J.C., M. Hamieh, and M. Sadelain, The pharmacology of second-generation chimeric antigen receptors. Nature Reviews Drug Discovery, 2015. 14(7): p. 499–509. [CrossRef] [PubMed] [Google Scholar]
- Accordino, G., et al., From Interconnection between Genes and Microenvironment to Novel Immunotherapeutic Approaches in Upper GastroIntestinal Cancers-A Multidisciplinary Perspective. Cancers (Basel), 2020. 12(8). [Google Scholar]
- Shi, H., et al., EphA2 chimeric antigen receptor-modified T cells for the immunotherapy of esophageal squamous cell carcinoma. J Thorac Dis, 2018. 10(5): p. 2779–2788. [CrossRef] [PubMed] [Google Scholar]
- Zhang, T., et al., miR-143 Regulates Memory T Cell Differentiation by Reprogramming T Cell Metabolism. J Immunol, 2018. 201(7): p. 2165–2175. [CrossRef] [PubMed] [Google Scholar]
- McGowan, E., et al., PD-1 disrupted CAR-T cells in the treatment of solid tumors: Promises and challenges. Biomed Pharmacother, 2020. 121: p. 109–625. [CrossRef] [Google Scholar]
- Kiesgen, S., et al., Chimeric Antigen Receptor (CAR) T-Cell Therapy for Thoracic Malignancies. J Thorac Oncol, 2018. 13(1): p. 16–26. [CrossRef] [PubMed] [Google Scholar]
- Zhao, W., et al., The killing effect of novel bispecific Trop2/PD-L1 CAR-T cell targeted gastric cancer. Am J Cancer Res, 2019. 9(8): p. 1846–1856. [PubMed] [Google Scholar]
- Zhang, Z., et al., Modified CAR T cells targeting membrane-proximal epitope of mesothelin enhances the antitumor function against large solid tumor. Cell Death Dis, 2019. 10(7): p. 476. [CrossRef] [PubMed] [Google Scholar]
- Yang, L., Y. Wang, and H. Wang, Use of immunotherapy in the treatment of gastric cancer. Oncol Lett, 2019. 18(6): p. 5681–5690. [PubMed] [Google Scholar]
- Jiang, H., et al., Claudin18.2-Specific Chimeric Antigen Receptor Engineered T Cells for the Treatment of Gastric Cancer. J Natl Cancer Inst, 2019. 111(4): p. 409–418. [CrossRef] [PubMed] [Google Scholar]
- Han, Y., et al., Antitumor effects and persistence of a novel HER2 CAR T cells directed to gastric cancer in preclinical models. Am J Cancer Res, 2018. 8(1): p. 106–119. [PubMed] [Google Scholar]
- Song, Y., et al., Effective and persistent antitumor activity of HER2-directed CAR-T cells against gastric cancer cells in vitro and xenotransplanted tumors in vivo. Protein Cell, 2018. 9(10): p. 867–878. [CrossRef] [PubMed] [Google Scholar]
- Kim, M., et al., Folate receptor 1 (FOLR1) targeted chimeric antigen receptor (CAR) T cells for thetreatment of gastric cancer. PLoS One, 2018. 13(6): p. e0198347. [CrossRef] [PubMed] [Google Scholar]
- Bcbnowska, D., et al., CAR-T Cell Therapy-An Overview of Targets in Gastric Cancer. J Clin Med, 2020. 9(6). [Google Scholar]
- Sotoudeh, M., et al., MSLN (Mesothelin), ANTXR1 (TEM8), and MUC3A are the potent antigenic targets for CAR T cell therapy of gastric adenocarcinoma. J Cell Biochem, 2019. 120(4): p. 5010–5017. [CrossRef] [PubMed] [Google Scholar]
- Chen, Y., et al., Chimeric antigen receptor-engineered T-cell therapy for liver cancer. Hepatobiliary Pancreat Dis Int, 2018. 17(4): p. 301–309. [CrossRef] [PubMed] [Google Scholar]
- Xia, A.L., et al., Chimeric-antigen receptor T (CART) cell therapy for solid tumors: challenges and opportunities. Oncotarget, 2017. 8(52): p. 90521–90531. [CrossRef] [PubMed] [Google Scholar]
- Liu, H., et al., Targeting Alpha-Fetoprotein (AFP)-MHC Complex with CAR T-Cell Therapy for Liver Cancer. Clin Cancer Res, 2017. 23(2): p. 478–488. [CrossRef] [PubMed] [Google Scholar]
- Zhang, C., et al., Phase I Escalating-Dose Trial of CAR-T Therapy Targeting CEA(+) Metastatic Colorectal Cancers. Mol Ther, 2017. 25(5): p. 1248–1258. [CrossRef] [PubMed] [Google Scholar]
- Burga, R.A., et al., Liver myeloid-derived suppressor cells expand in response to liver metastases in mice and inhibit the anti-tumor efficacy of anti-CEA CAR-T. Cancer Immunol Immunother, 2015. 64(7): p. 817–829. [CrossRef] [PubMed] [Google Scholar]
- DeSelm, C.J., et al., CAR T-cell therapy for pancreatic cancer. J Surg Oncol, 2017. 116(1): p. 63–74. [CrossRef] [PubMed] [Google Scholar]
- Akce, M., et al., The Potential of CAR T Cell Therapy in Pancreatic Cancer. Front Immunol, 2018. 9: p. 2166. [CrossRef] [PubMed] [Google Scholar]
- Watanabe, K., et al., Pancreatic cancer therapy with combined mesothelin-redirected chimeric antigen receptor T cells and cytokine-armed oncolytic adenoviruses. JCI Insight, 2018. 3(7). [PubMed] [Google Scholar]
- Golubovskaya, V., et al., CD47-CAR-T Cells Effectively Kill Target Cancer Cells and Block Pancreatic Tumor Growth. Cancers (Basel), 2017. 9(10). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.