Open Access
Issue |
E3S Web Conf.
Volume 271, 2021
2021 2nd International Academic Conference on Energy Conservation, Environmental Protection and Energy Science (ICEPE 2021)
|
|
---|---|---|
Article Number | 03068 | |
Number of page(s) | 8 | |
Section | Research on Energy Chemistry and Chemical Simulation Performance | |
DOI | https://doi.org/10.1051/e3sconf/202127103068 | |
Published online | 15 June 2021 |
- Pal, D. K., Pong, A. W. & Chung, W. K.. Genetic evaluation and counseling for epilepsy. Nature Reviews Neurology, 6: 445–453, DOI: 10.1038/nrneurol.2010.92 (2010). [CrossRef] [PubMed] [Google Scholar]
- Zhang, Y. J. et al. Gene Mutation Analysis in 253 Chinese Children with Unexplained Epilepsy and Intellectual/Developmental Disabilities. PLoS One 10, DOI: 10.1371/journal.pone.0141782 (2015). [Google Scholar]
- Kohling, R. & Wolfart, J.. Potassium Channels in Epilepsy. Cold Spring Harb Perspect Med 6, DOI: 10.1101/cshperspect.a022871 (2016). [Google Scholar]
- Allen, N. M., Weckhuysen, S., Gorman, K., King, M. D. & Lerche, H.. Genetic potassium channel-associated epilepsies: Clinical review of the Kv family. Eur J Paediatr Neurol, 24: 105–116, DOI: 10.1016/j.ejpn.2019.12.002 (2020). [CrossRef] [PubMed] [Google Scholar]
- Hebbar, M. & Mefford, H. C.. Recent advances in epilepsy genomics and genetic testing. F1000Res 9, DOI: 10.12688/f1000research.21366.1 (2020). [PubMed] [Google Scholar]
- Browne, D. L. et al. Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA1. Nat Genet, 8: 136–140, DOI: 10.1038/ng1094-136 (1994). [CrossRef] [PubMed] [Google Scholar]
- Heilstedt, H. A. et al. Loss of the potassium channel beta-subunit gene, KCNAB2, is associated with epilepsy in patients with 1p36 deletion syndrome. Epilepsia, 42: 1103–1111, DOI: 10.1046/j.1528-1157.2001.08801.x (2001). [CrossRef] [PubMed] [Google Scholar]
- Zhang, Y. et al. Gene Mutation Analysis in 253 Chinese Children with Unexplained Epilepsy and Intellectual/Developmental Disabilities. PLoS One 10, e0141782, DOI: 10.1371/journal.pone.0141782 (2015). [CrossRef] [PubMed] [Google Scholar]
- Singh, N. A. et al. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat Genet, 18: 25–29, DOI: 10.1038/ng0198-25 (1998). [CrossRef] [PubMed] [Google Scholar]
- Singh, N. A. et al. KCNQ2 and KCNQ3 potassium channel genes in benign familial neonatal convulsions: expansion of the functional and mutation spectrum. Brain, 126: 2726–2737, DOI: 10.1093/brain/awg286 (2003). [CrossRef] [PubMed] [Google Scholar]
- Huang, W., Liu, M., Yan, S. F. & Yan, N.. Structurebased assessment of disease-related mutations in human voltage-gated sodium channels. Protein Cell, 8: 401–438, DOI: 10.1007/s13238-017-0372-z (2017). [CrossRef] [PubMed] [Google Scholar]
- Menezes, L. F. S., Sabia Junior, E. F., Tibery, D. V., Carneiro, L. D. A. & Schwartz, E. F.. Epilepsy-Related Voltage-Gated Sodium Channelopathies: A Review. Front Pharmacol 11, 1276, DOI: 10.3389/fphar.2020.01276 (2020). [CrossRef] [PubMed] [Google Scholar]
- Catterall, W. A., Kalume, F. & Oakley, J. C.. NaV1.1 channels and epilepsy. J Physiol, 588: 1849–1859, DOI: 10.1113/jphysiol.2010.187484 (2010). [CrossRef] [PubMed] [Google Scholar]
- Escayg, A. & Goldin, A. L.. Sodium channel SCN1A and epilepsy: mutations and mechanisms. Epilepsia, 51: 1650–1658, DOI: 10.1111/j.1528-1167.2010.02640.x (2010). [CrossRef] [PubMed] [Google Scholar]
- Yu, F. H. et al. Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat Neurosci 9, 1142–1149, DOI: 10.1038/nn1754 (2006). [CrossRef] [PubMed] [Google Scholar]
- Reynolds, C., King, M. D. & Gorman, K. M.. The phenotypic spectrum of SCN2A-related epilepsy. Eur J Paediatr Neurol, 24: 117–122, DOI: 10.1016/j.ejpn.2019.12.016 (2020). [CrossRef] [PubMed] [Google Scholar]
- Wolff, M. et al. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain, 140: 1316–1336, DOI: 10.1093/brain/awx054 (2017). [CrossRef] [PubMed] [Google Scholar]
- Hains, B. C. et al. Upregulation of sodium channel Nav1.3 and functional involvement in neuronal hyperexcitability associated with central neuropathic pain after spinal cord injury. J Neurosci 23, 8881–8892 (2003). [CrossRef] [PubMed] [Google Scholar]
- Holland, K. D. et al. Mutation of sodium channel SCN3A in a patient with cryptogenic pediatric partial epilepsy. Neurosci Lett, 433: 65–70, DOI: 10.1016/j.neulet.2007.12.064 (2008). [CrossRef] [PubMed] [Google Scholar]
- Caldwell, J. H., Schaller, K. L., Lasher, R. S., Peles, E. & Levinson, S. R.. Sodium channel Na(v)1.6 is localized at nodes of ranvier, dendrites, and synapses. Proc Natl Acad Sci U S A, 97: 5616–5620, DOI: 10.1073/pnas.090034797 (2000). [CrossRef] [PubMed] [Google Scholar]
- Hu, W. et al. Distinct contributions of Na(v)1.6 and Na(v)1.2 in action potential initiation and backpropagation. Nat Neurosci, 12: 996–1002, DOI: 10.1038/nn.2359 (2009). [CrossRef] [PubMed] [Google Scholar]
- Oliva, M., Berkovic, S. F. & Petrou, S.. Sodium channels and the neurobiology of epilepsy. Epilepsia, 53: 1849–1859, DOI: 10.1111/j.1528-1167.2012.03631.x (2012). [CrossRef] [PubMed] [Google Scholar]
- Darszon, A. & Hernandez-Cruz, A.. T-type Ca2+ channels in spermatogenic cells and sperm. Pflugers Archiv-European Journal of Physiology 466, 819–831, DOI: 10.1007/s00424-014-1478-2 (2014). [CrossRef] [Google Scholar]
- Wang, H. Y. et al. Low-Voltage-Activated Ca(V)3.1 Calcium Channels Shape T Helper Cell Cytokine Profiles. Immunity, 44: 782–794, DOI: 10.1016/j.immuni.2016.01.015 (2016). [CrossRef] [PubMed] [Google Scholar]
- Wang, J. et al. Epilepsy-associated genes. Seizure, 44: 11–20, DOI: https://doi.org/10.1016/j.seizure.2016.11.030 (2017). [CrossRef] [PubMed] [Google Scholar]
- Carpenter, J. C. & Schorge, S.. The voltage-gated channelopathies as a paradigm for studying epilepsycausing genes. Current Opinion in Physiology 2, 71–76, DOI: 10.1016/j.cophys.2018.01.004 (2018). [CrossRef] [Google Scholar]
- Catterall, W. A., Perez-Reyes, E., Snutch, T. P. & Striessnig, J. International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacological Reviews, 57: 411–425, DOI: 10.1124/pr.57.4.5 (2005). [CrossRef] [PubMed] [Google Scholar]
- Striessnig, J.. Voltage-Gated Ca(2+)-Channel alpha1-Subunit de novo Missense Mutations: Gain or Loss of Function-Implications for Potential Therapies. Front Synaptic Neurosci 13, 634–760, DOI: 10.3389/fnsyn.2021.634760 (2021). [CrossRef] [Google Scholar]
- Miao, Q. L., Herlitze, S., Mark, M. D. & Noebels, J. L.. Adult loss of Cacna1a in mice recapitulates childhood absence epilepsy by distinct thalamic bursting mechanisms. Brain, 143: 161–174, DOI: 10.1093/brain/awz365 (2020). [CrossRef] [PubMed] [Google Scholar]
- Prontera, P. et al. Epilepsy in hemiplegic migraine: Genetic mutations and clinical implications. Cephalalgia, 38: 361–373, DOI: 10.1177/0333102416686347 (2018). [CrossRef] [PubMed] [Google Scholar]
- Bomben, V. C. & Sontheimer, H. W.. Inhibition of transient receptor potential canonical channels impairs cytokinesis in human malignant gliomas. Cell Proliferation, 41: 98–121, DOI: 10.1111/j.1365-2184.2007.00504.x (2008). [CrossRef] [PubMed] [Google Scholar]
- Perez-Reyes, E. et al. Molecular characterization of a neuronal low-voltage-activated T-type calcium channel. Nature, 391: 896–900, DOI: 10.1038/36110 (1998). [CrossRef] [PubMed] [Google Scholar]
- Cain, S. M. & Snutch, T. P.. Voltage-gated calcium channels and disease. Biofactors, 37: 197–205, DOI: 10.1002/biof.158 (2011). [CrossRef] [PubMed] [Google Scholar]
- Weiss, N. & Zamponi, G. W.. T-type calcium channels: From molecule to therapeutic opportunities. International Journal of Biochemistry & Cell Biology, 108: 34–39, DOI: 10.1016/j.biocel.2019.01.008 (2019). [CrossRef] [Google Scholar]
- Noebels, J. L.. Epilepsy as a prototype neurodevelopmental disorder. International Journal of Developmental Neuroscience, 28: 640–640, DOI: 10.1016/j.ijdevneu.2010.07.007 (2010). [CrossRef] [Google Scholar]
- Durr, A.. Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurology, 9: 885–894, DOI: 10.1016/s1474-4422(10)70183-6 (2010). [CrossRef] [Google Scholar]
- Morino, H. et al. A mutation in the low voltage-gated calcium channel CACNA1G alters the physiological properties of the channel, causing spinocerebellar ataxia. Molecular Brain 8, DOI: 10.1186/s13041-015-0180-4 (2015). [PubMed] [Google Scholar]
- Calhoun, J. D., Hawkins, N. A., Zachwieja, N. J. & Kearney, J. A.. Cacna1g is a genetic modifier of epilepsy caused by mutation of voltage-gated sodium channel Scn2a. Epilepsia, 57: E103–E107, DOI: 10.1111/epi.13390 (2016). [CrossRef] [PubMed] [Google Scholar]
- Calhoun, J. D., Hawkins, N. A., Zachwieja, N. J. & Kearney, J. A.. Cacna1g is a genetic modifier of epilepsy in a mouse model of Dravet syndrome. Epilepsia, 58: E111–E115, DOI: 10.1111/epi.13811 (2017). [CrossRef] [PubMed] [Google Scholar]
- Nieto-Barcelo, J. J. et al. Variant in CACNA1G as a Possible Genetic Modifier of Neonatal Epilepsy in an Infant with a De Novo SCN2A Mutation. Journal of Pediatric Genetics, DOI: 10.1055/s-0041-1723958 (2021). [Google Scholar]
- Souza, I. A. et al. Pathogenic Cav3.2 channel mutation in a child with primary generalized epilepsy. Molecular Brain 12, 6, DOI: 10.1186/s13041-019-0509-5 (2019). [CrossRef] [PubMed] [Google Scholar]
- Calhoun, J. D. et al. CACNA1H variants are not a cause of monogenic epilepsy. Human Mutation, 41: 1138–1144, DOI: 10.1002/humu.24017 (2020). [CrossRef] [PubMed] [Google Scholar]
- Myers, K. A. et al. Contribution of rare genetic variants to drug response in absence epilepsy. Epilepsy Res 170, 106537, DOI: 10.1016/j.eplepsyres.2020.106537 (2021). [CrossRef] [PubMed] [Google Scholar]
- Scheffer, I. E. & Berkovic, S. F.. The genetics of human epilepsy. Trends in Pharmacological Sciences, 24: 428–433, DOI: 10.1016/s0165-6147(03)00194-9 (2003). [CrossRef] [PubMed] [Google Scholar]
- Goetz, T., Arslan, A., Wisden, W. & Wulff, P. in Gaba and the Basal Ganglia: From Molecules To Systems Vol. 160 Progress in Brain Research (eds J. M. Tepper, E. D. Abercrombie, & J. P. Bolam) 21–41 (2007). [Google Scholar]
- Sander, T. et al. Association of the 867Asp variant of the human anion exchanger 3 gene with common subtypes of idiopathic generalized epilepsy. Epilepsy Research, 51: 249–255, DOI: 10.1016/s0920-1211(02)00152-3 (2002). [CrossRef] [PubMed] [Google Scholar]
- Haug, K. et al. Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies (Retraction of vol 33, pg 527, 2003). Nature Genetics, 41: 1043–1043, DOI: 10.1038/ng0909-1043 (2009). [CrossRef] [PubMed] [Google Scholar]
- Chen, Z. et al. Mutational analysis of CHRNB2, CHRNA2 and CHRNA4 genes in Chinese population with autosomal dominant nocturnal frontal lobe epilepsy. Int J Clin Exp Med 8, 9063–9070 (2015). [PubMed] [Google Scholar]
- Hwang, S. K., Makita, Y., Kurahashi, H., Cho, Y. W. & Hirose, S.. Autosomal dominant nocturnal frontal lobe epilepsy: a genotypic comparative study of Japanese and Korean families carrying the CHRNA4 Ser284Leu mutation. J Hum Genet, 56: 609–612, DOI: 10.1038/jhg.2011.69 (2011). [CrossRef] [PubMed] [Google Scholar]
- Steinlein, O. K. et al. An insertion mutation of the CHRNA4 gene in a family with autosomal dominant nocturnal frontal lobe epilepsy. Hum Mol Genet, 6: 943–947, DOI: 10.1093/hmg/6.6.943 (1997). [CrossRef] [PubMed] [Google Scholar]
- Diaz-Otero, F. et al. Autosomal dominant nocturnal frontal lobe epilepsy with a mutation in the CHRNB2 gene. Epilepsia, 49: 516–520, DOI: 10.1111/j.1528-1167.2007.01328.x (2008). [CrossRef] [PubMed] [Google Scholar]
- Bertrand, D. et al. The CHRNB2 mutation I312M is associated with epilepsy and distinct memory deficits. Neurobiol Dis, 20: 799–804, DOI: 10.1016/j.nbd.2005.05.013 (2005). [CrossRef] [PubMed] [Google Scholar]
- Fan, H. et al. Detection of common disease-causing mutations in mitochondrial DNA (mitochondrial encephalomyopathy, lactic acidosis with stroke-like episodes MTTL1 3243 A>G and myoclonic epilepsy associated with ragged-red fibers MTTK 8344A>G) by real-time polymerase chain reaction. J Mol Diagn, 8: 277–281, DOI: 10.2353/jmoldx.2006.050066 (2006). [CrossRef] [PubMed] [Google Scholar]
- Prasad, M. et al. MELAS: A Multigenerational Impact of the MTTL1 A3243G MELAS Mutation. Can J Neurol Sci, 41: 210–219, DOI: 10.1017/S0317167100016607 (2014). [CrossRef] [PubMed] [Google Scholar]
- Senechal, K. R., Thaller, C. & Noebels, J. L.. ADPEAF mutations reduce levels of secreted LGI1, a putative tumor suppressor protein linked to epilepsy. Hum Mol Genet, 14: 1613–1620, DOI: 10.1093/hmg/ddi169 (2005). [CrossRef] [PubMed] [Google Scholar]
- Kegel, L., Aunin, E., Meijer, D. & Bermingham, J. R.. LGI proteins in the nervous system. ASN Neuro, 5: 167–181, DOI: 10.1042/AN20120095 (2013). [CrossRef] [PubMed] [Google Scholar]
- Fukata, Y. et al. Epilepsy-related ligand/receptor complex LGI1 and ADAM22 regulate synaptic transmission. Science, 313: 1792–1795, DOI: 10.1126/science.1129947 (2006). [CrossRef] [PubMed] [Google Scholar]
- Nobile, C. et al. LGI1 mutations in autosomal dominant and sporadic lateral temporal epilepsy. Hum Mutat, 30: 530–536, DOI: 10.1002/humu.20925 (2009). [CrossRef] [PubMed] [Google Scholar]
- Ohkawa, T. et al. Autoantibodies to epilepsy-related LGI1 in limbic encephalitis neutralize LGI1-ADAM22 interaction and reduce synaptic AMPA receptors. J Neurosci, 33: 18161–18174, DOI: 10.1523/JNEUROSCI.3506-13.2013 (2013). [CrossRef] [PubMed] [Google Scholar]
- Longley, M. J., Graziewicz, M. A., Bienstock, R. J. & Copeland, W. C.. Consequences of mutations in human DNA polymerase gamma. Gene, 354: 125–131, DOI: 10.1016/j.gene.2005.03.029 (2005). [CrossRef] [PubMed] [Google Scholar]
- Spinazzola, A. & Zeviani, M.. Disorders from perturbations of nuclear-mitochondrial intergenomic cross-talk. J Intern Med, 265: 174–192, DOI: 10.1111/j.1365-2796.2008.02059.x (2009). [CrossRef] [PubMed] [Google Scholar]
- Tzoulis, C. et al. Molecular pathogenesis of polymerase gamma-related neurodegeneration. Ann Neurol, 76: 66–81, DOI: 10.1002/ana.24185 (2014). [CrossRef] [PubMed] [Google Scholar]
- Tzoulis, C. et al. Localized cerebral energy failure in DNA polymerase gamma-associated encephalopathy syndromes. Brain, 133: 1428–1437, DOI: 10.1093/brain/awq067 (2010). [CrossRef] [PubMed] [Google Scholar]
- Anagnostou, M. E., Ng, Y. S., Taylor, R. W. & McFarland, R.. Epilepsy due to mutations in the mitochondrial polymerase gamma (POLG) gene: A clinical and molecular genetic review. Epilepsia, 57: 1531–1545, DOI: 10.1111/epi.13508 (2016). [CrossRef] [PubMed] [Google Scholar]
- Scheel, H., Tomiuk, S. & Hofmann, K.. A common protein interaction domain links two recently identified epilepsy genes. Human Molecular Genetics, 11: 1757–1762, DOI: 10.1093/hmg/11.15.1757 (2002). [CrossRef] [PubMed] [Google Scholar]
- Nakayama, J. et al. A nonsense mutation of the mass1 gene in a family with febrile and aebrile seizures. Annals of Neurology, 52: 654–657, DOI: 10.1002/ana.10347 (2002). [CrossRef] [PubMed] [Google Scholar]
- Deprez, L. et al. Genome-wide linkage of febrile seizures and epilepsy to the FEBL4 locus at 5q14.3-q23.1 and no MAS S1 mutation. Human Genetics, 118: 618–625, DOI: 10.1007/s00439-005-0077-x (2006). [CrossRef] [PubMed] [Google Scholar]
- Katano, M. et al. The juvenile myoclonic epilepsy-related protein EFHC1 interacts with the redoxsensitive TRPM2 channel linked to cell death. Cell Calcium, 51: 179–185, DOI: 10.1016/j.ceca.2011.12.011 (2012). [CrossRef] [PubMed] [Google Scholar]
- Medina, M. T. et al. Novel mutations in Myoclonin1/EFHC1 in sporadic and familial juvenile myoclonic epilepsy. Neurology, 70: 2137–2144, DOI: 10.1212/01.wnl.0000313149.73035.99 (2008). [CrossRef] [PubMed] [Google Scholar]
- Stogmann, E. et al. Idiopathic generalized epilepsy phenotypes associated with different EFHC1 mutations. Neurology, 67: 2029–2031, DOI: 10.1212/01.wnl.0000250254.67042.1b (2006). [CrossRef] [PubMed] [Google Scholar]
- Mullen, S. A., Suls, A., De Jonghe, P., Berkovic, S. F. & Scheffer, I. E.. Absence epilepsies with widely variable onset are a key feature of familial GLUT1 deficiency. Neurology, 75: 432–440, DOI: 10.1212/WNL.0b013e3181eb58b4 (2010). [CrossRef] [PubMed] [Google Scholar]
- Striano, P. et al. GLUT1 mutations are a rare cause of familial idiopathic generalized epilepsy. Neurology, 78: 557–562, DOI: 10.1212/WNL.0b013e318247ff54 (2012). [CrossRef] [PubMed] [Google Scholar]
- Suls, A. et al. Early-Onset Absence Epilepsy Caused by Mutations in the Glucose Transporter GLUT1. Annals of Neurology, 66: 415–419, DOI: 10.1002/ana.21724 (2009). [CrossRef] [PubMed] [Google Scholar]
- Yang, Z. X. et al. Clinical Diagnosis, Treatment, and ALDH7A1 Mutations in Pyridoxine-Dependent Epilepsy in Three Chinese Infants. Plos One 9, DOI: 10.1371/journal.pone.0092803 (2014). [Google Scholar]
- Heron, S. E. et al. PRRT2 Mutations Cause Benign Familial Infantile Epilepsy and Infantile Convulsions with Choreoathetosis Syndrome. American Journal of Human Genetics, 90: 152–160, DOI: 10.1016/j.ajhg.2011.12.003 (2012). [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.