Open Access
Issue |
E3S Web Conf.
Volume 271, 2021
2021 2nd International Academic Conference on Energy Conservation, Environmental Protection and Energy Science (ICEPE 2021)
|
|
---|---|---|
Article Number | 03069 | |
Number of page(s) | 11 | |
Section | Research on Energy Chemistry and Chemical Simulation Performance | |
DOI | https://doi.org/10.1051/e3sconf/202127103069 | |
Published online | 15 June 2021 |
- Marwaha, S., Durrani, A. and Singh, S. (2013). Employment outcomes in people with bipolar disorder: a systematic review. Acta Psychiatr. Scand. 128, 179–193. [CrossRef] [PubMed] [Google Scholar]
- Culpepper, L. (2014). The diagnosis and treatment of bipolar disorder: decision-making in primary care. The primary care companion for CNS disorders 16. [Google Scholar]
- Rowland, T. A. and Marwaha, S. (2018). Epidemiology and risk factors for bipolar disorder. Therapeutic advances in psychopharmacology 8, 251–269. [CrossRef] [PubMed] [Google Scholar]
- Grande, I., Fries, G. R., Kunz, M. and Kapczinski, F. (2010). The Role of BDNF as a Mediator of Neuroplasticity in Bipolar Disorder. Psychiatry Investig 7, 243–250. [CrossRef] [PubMed] [Google Scholar]
- Cunha, A. B. M., Frey, B. N., Andreazza, A. C., Goi, J. D., Rosa, A. R., Gonsalves, C. A., Santin, A. and Kapczinski, F. (2006). Serum brain-derived neurotrophic factor is decreased in bipolar disorder during depressive and manic episodes. Neurosci. Lett. 398, 215–219. [CrossRef] [PubMed] [Google Scholar]
- Hofer, M., Pagliusi, S. R., Hohn, A., Leibrock, J. and Barde, Y. (1990). Regional distribution of brain-derived neurotrophic factor mRNA in the adult mouse brain. The EMBO journal 9, 2459–2464. [CrossRef] [PubMed] [Google Scholar]
- Panja, D. and Bramham, C. R. (2014). BDNF mechanisms in late LTP formation: a synthesis and breakdown. Neuropharmacology 76, 664–676. [CrossRef] [PubMed] [Google Scholar]
- Notaras, M. and van den Buuse, M. (2019). Brain-derived neurotrophic factor (BDNF): novel insights into regulation and genetic variation. The Neuroscientist 25, 434–454. [CrossRef] [Google Scholar]
- Kowianski, P., Lietzau, G., Czuba, E., Waskow, M., Steliga, A. and Morys, J. (2018). BDNF: a key factor with multipotent impact on brain signaling and synaptic plasticity. Cell. Mol. Neurobiol. 38, 579–593. [CrossRef] [PubMed] [Google Scholar]
- Karege, F., Bondolfi, G., Gervasoni, N., Schwald, M., Aubry, J.-M. and Bertschy, G. (2005). Low brain-derived neurotrophic factor (BDNF) levels in serum of depressed patients probably results from lowered platelet BDNF release unrelated to platelet reactivity. Biol. Psychiatry 57, 1068–1072. [CrossRef] [PubMed] [Google Scholar]
- Polyakova, M., Stuke, K., Schuemberg, K., Mueller, K., Schoenknecht, P. and Schroeter, M. L. (2015). BDNF as a biomarker for successful treatment of mood disorders: A systematic & quantitative metaanalysis. J. Affect. Disord. 174, 432–440. [CrossRef] [PubMed] [Google Scholar]
- Wu, R., Fan, J., Zhao, J., Calabrese, J. R. and Gao, K. (2014). The relationship between neurotrophins and bipolar disorder. Expert Rev. Neurother. 14, 51–65. [CrossRef] [PubMed] [Google Scholar]
- Harrison, P. J., Cipriani, A., Harmer, C. J., Nobre, A. C., Saunders, K., Goodwin, G. M. and Geddes, J. R. (2016). Innovative approaches to bipolar disorder and its treatment. Ann. N. Y. Acad. Sci. 1366, 76–89. [CrossRef] [PubMed] [Google Scholar]
- Merikangas, K. R., Jin, R., He, J.-P., Kessler, R. C., Lee, Z. Sampson, N. A., Viana, M. C., Andrade, L. H., Hu, C., Karam, E.G., Ladea, M., Medina-Mora, M.E., Ono, Y., Posada-Villa, J., Sagar, R., Wells, J.E. and Zarkov, Z. (2011). Prevalence and Correlates of Bipolar Spectrum Disorder in the World Mental Health Survey Initiative. Arch. Gen. Psychiatry 68, 241–251. [CrossRef] [PubMed] [Google Scholar]
- Tsuchiya, K. J., Byrne, M. and Mortensen, P. B. (2003). Risk factors in relation to an emergence of bipolar disorder: a systematic review. Bipolar Disord. 5, 231–242. [CrossRef] [PubMed] [Google Scholar]
- Marty, M. and Segal, D. (2015). DSM-5: Diagnostic and Statistical Manual of Mental Disorders. 965–970. [Google Scholar]
- Yatham, L. N., Kennedy, S. H., Parikh, S. V., Schaffer, A., Beaulieu, S., Alda, M., O’Donovan, C., MacQueen, G., McIntyre, R.S., Sharma, V., Ravindran, A., Young, L.T., Milev, R., Bond, D.J., Frey, B.N., Goldstein, B.I., Lafer, B., Birmaher, B., Ha, K., Nolen, W.A. and Berk, M. (2013). Canadian Network for Mood and Anxiety Treatments (CANMAT) and International Society for Bipolar Disorders (ISBD) collaborative update of CANMAT guidelines for the management of patients with bipolar disorder: update 2013. Bipolar Disord. 15, 1–44. [CrossRef] [PubMed] [Google Scholar]
- Hamdani, N., Daban-Huard, C., Lajnef, M., Gadel, R., Le Corvoisier, P., Delavest, M., Carde, S., Lepine, J.-P., Jamain, S., Houenou, J., Galeh, B., Richard, J.-R., Aoki, M., Charron, D., Krishnamoorthy, R., Yolken, R., Dickerson, F., Tamouza, R. and Leboyer, M. (2015). Cognitive deterioration among bipolar disorder patients infected by Toxoplasma gondii is correlated to interleukin 6 levels. J. Affect. Disord. 179, 161–166. [CrossRef] [PubMed] [Google Scholar]
- Townsend, J. and Altshuler, L. L. (2012). Emotion processing and regulation in bipolar disorder: a review. Bipolar Disord. 14, 326–339. [CrossRef] [PubMed] [Google Scholar]
- Newberg, A. R., Catapano, L. A., Zarate, C. A. and Manji, H. K. (2008). Neurobiology of bipolar disorder. Expert Rev. Neurother. 8, 93–110. [CrossRef] [PubMed] [Google Scholar]
- Maletic, V. and Raison, C. (2014). Integrated Neurobiology of Bipolar Disorder. Frontiers in Psychiatry 5, 98. [CrossRef] [PubMed] [Google Scholar]
- Hashimoto, K. (2010). Brain-derived neurotrophic factor as a biomarker for mood disorders: An historical overview and future directions. Psychiatry Clin. Neurosci. 64, 341–357. [CrossRef] [PubMed] [Google Scholar]
- Bath, K. G. and Lee, F. S. (2006). Variant BDNF (Val66Met) impact on brain structure and function. Cognitive, Affective, & Behavioral Neuroscience 6, 79–85. [CrossRef] [Google Scholar]
- Duman, R. S. and Monteggia, L. M. (2006). A Neurotrophic Model for Stress-Related Mood Disorders. Biol. Psychiatry 59, 1116–1127. [CrossRef] [PubMed] [Google Scholar]
- Green, E. and Craddock, N. (2003). Brain-derived neurotrophic factor as a potential risk locus for bipolar disorder: Evidence, limitations, and implications. Curr. Psychiatry Rep. 5, 469–476. [CrossRef] [PubMed] [Google Scholar]
- Fernandes, B. S., Molendijk, M. L., Kohler, C. A., Soares, J. C., Leite, C. M. G. S., Machado-Vieira, R., Ribeiro, T. L., Silva, J. C., Sales, P. M. G., Quevedo, J., Oertel-Knochel, V., Vieta, E., Gonzalez-Pinto, A., Berk, M. and Carvalho, A. F. (2015). Peripheral brain-derived neurotrophic factor (BDNF) as a biomarker in bipolar disorder: a meta-analysis of 52 studies. BMC Med. 13, 289. [CrossRef] [PubMed] [Google Scholar]
- Kim, H.-W., Rapoport, S. I. and Rao, J. S. (2010). Altered expression of apoptotic factors and synaptic markers in postmortem brain from bipolar disorder patients. Neurobiol. Dis. 37, 596–603. [CrossRef] [PubMed] [Google Scholar]
- Teng, H. K., Teng, K. K., Lee, R., Wright, S., Tevar, S., Almeida, R. D., Kermani, P., Torkin, R., Chen, Z.-Y., Lee, F. S., Kraemer, R. T., Nykjaer, A. and Hempstead, B. L. (2005). ProBDNF Induces Neuronal Apoptosis via Activation of a Receptor Complex of p75<sup>NTR</sup> and Sortilin. The Journal of Neuroscience 25, 5455. [CrossRef] [PubMed] [Google Scholar]
- Lindholm, J. S. O. and Castren, E. (2014). Mice with altered BDNF signaling as models for mood disorders and antidepressant effects. Front. Behav. Neurosci. 8. [PubMed] [Google Scholar]
- Teng, H. K., Teng, K. K., Lee, R., Wright, S., Tevar, S., Almeida, R. D., Kermani, P., Torkin, R., Chen, Z.-Y., Lee, F. S., Kraemer, R. T., Nykjaer, A. and Hempstead, B. L. (2005). ProBDNF Induces Neuronal Apoptosis via Activation of a Receptor Complex of p75 and Sortilin. The Journal of Neuroscience 25, 5455. [CrossRef] [PubMed] [Google Scholar]
- Anastasia, A., Deinhardt, K., Chao, M. V., Will, N. E., Irmady, K., Lee, F. S., Hempstead, B. L. and Bracken, C. (2013). Val66Met polymorphism of BDNF alters prodomain structure to induce neuronal growth cone retraction. Nat. Commun. 4, 2490. [CrossRef] [PubMed] [Google Scholar]
- Reichardt, L. F. (2006). Neurotrophin-regulated signalling pathways. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 361, 1545–1564. [CrossRef] [PubMed] [Google Scholar]
- Notaras, M. and van den Buuse, M. (2020). Neurobiology of BDNF in fear memory, sensitivity to stress, and stress-related disorders. Mol. Psychiatry 25, 2251–2274. [CrossRef] [PubMed] [Google Scholar]
- Finn, R. D., Coggill, P., Eberhardt, R. Y., Eddy, S. R., Mistry, J., Mitchell, A. L., Potter, S. C., Punta, M., Qureshi, M. and Sangrador-Vegas, A. (2016). The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44, D279D285. [CrossRef] [PubMed] [Google Scholar]
- Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, A., Zaitsev, E., Gold, B., Goldman, D. and Dean, M. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112, 257–269. [CrossRef] [PubMed] [Google Scholar]
- Lu, R.-B., Chen, S.-L., Lee, S.-Y., Chang, Y.-H., Chen, S.-H., Chu, C.-H., Tzeng, N.-S., Lee, I. H., Chen, P. S., Yeh, T. L., Huang, S.-Y., Yang, Y. K. and Hong, J.-S. (2012). Neuroprotective and neurogenesis agent for treating bipolar II disorder: Add-on memantine to mood stabilizer works. Med. Hypotheses 79, 280–283. [CrossRef] [PubMed] [Google Scholar]
- Lim, Y. Y., Villemagne, V. L., Laws, S. M., Ames, D., Pietrzak, R. H., Ellis, K. A., Harrington, K. D., Bourgeat, P., Salvado, O. and Darby, D. (2013). BDNF Val66Met, A0 amyloid, and cognitive decline in preclinical Alzheimer's disease. Neurobiol. Aging 34, 2457–2464. [CrossRef] [PubMed] [Google Scholar]
- Matsuo, K., Walls-Bass, C. M., Nicoetti, M. A., Diershke, N., Hatch, J. P., Nery, F. G., Frey, B. N., Monkul, E. S., Zunta, G. B. and Bowden, C. L. (2007). Brain-derived neurotrophic factor val66met polymorphism and morphometric abnormality in bipolar disorder patients. Biol. Psychiatry 61, 141S–141S. [Google Scholar]
- Chen, Z.-Y., Jing, D., Bath, K. G., Ieraci, A., Khan, T., Siao, C.-J., Herrera, D. G., Toth, M., Yang, C. and McEwen, B. S. (2006). Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science 314, 140–143. [CrossRef] [PubMed] [Google Scholar]
- Gonzalez-Billault, C., Munoz-Llancao, P., Henriquez, D. R., Wojnacki, J., Conde, C. and Caceres, A. (2012). The role of small GTPases in neuronal morphogenesis and polarity. Cytoskeleton 69, 464–485. [CrossRef] [Google Scholar]
- Connor, S. A. and Wang, Y. T. (2015). A Place at the Table: LTD as a Mediator of Memory Genesis. The Neuroscientist 22, 359–371. [CrossRef] [Google Scholar]
- Berridge, M. J. (2014). Calcium signalling and psychiatric disease: bipolar disorder and schizophrenia. Cell Tissue Res. 357, 477–492. [CrossRef] [PubMed] [Google Scholar]
- Mizui, T., Ishikawa, Y., Kumanogoh, H., Lume, M., Matsumoto, T., Hara, T., Yamawaki, S., Takahashi, M., Shiosaka, S. and Itami, C. (2015). BDNF propeptide actions facilitate hippocampal LTD and are altered by the common BDNF polymorphism Val66Met. Proceedings of the National Academy of Sciences 112, E3067–E3074. [CrossRef] [Google Scholar]
- Ninan, I., Bath, K. G., Dagar, K., Perez-Castro, R., Plummer, M. R., Lee, F. S. and Chao, M. V. (2010). The BDNF Val66Met polymorphism impairs NMDA receptor-dependent synaptic plasticity in the hippocampus. J. Neurosci. 30, 8866–8870. [CrossRef] [PubMed] [Google Scholar]
- Uegaki, K., Kumanogoh, H., Mizui, T., Hirokawa, T., Ishikawa, Y. and Kojima, M. (2017). BDNF binds its pro-peptide with high affinity and the common Val66Met polymorphism attenuates the interaction. Int. J. Mol. Sci. 18, 1042. [CrossRef] [Google Scholar]
- Vieta, E., Berk, M., Schulze, T. G., Carvalho, A. F., Suppes, T., Calabrese, J. R., Gao, K., Miskowiak, K. W. and Grande, I. (2018). Bipolar disorders. Nature Reviews Disease Primers 4, 18008. [CrossRef] [PubMed] [Google Scholar]
- Bell, C. C. (1994). DSM-IV: Diagnostic and Statistical Manual of Mental Disorders. JAMA 272, 828–829. [CrossRef] [Google Scholar]
- Muller, D. J., De Luca, V., Sicard, T., King, N., Strauss, J. and Kennedy, J. L. (2006). Brain-derived neurotrophic factor (BDNF) gene and rapid-cycling bipolar disorder: family-based association study. The British Journal of Psychiatry 189, 317–323. [CrossRef] [Google Scholar]
- Teng, H. K., Teng, K. K., Lee, R., Wright, S., Tevar, S., Almeida, R. D., Kermani, P., Torkin, R., Chen, Z.-Y. and Lee, F. S. (2005). ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J. Neurosci. 25, 5455–5463. [CrossRef] [PubMed] [Google Scholar]
- Chen, Z.-Y., Ieraci, A., Teng, H., Dall, H., Meng, C.-X., Herrera, D. G., Nykjaer, A., Hempstead, B. L. and Lee, F. S. (2005). Sortilin controls intracellular sorting of brain-derived neurotrophic factor to the regulated secretory pathway. J. Neurosci. 25, 6156–6166. [CrossRef] [PubMed] [Google Scholar]
- Koshimizu, H., Kiyosue, K., Hara, T., Hazama, S., Suzuki, S., Uegaki, K., Nagappan, G., Zaitsev, E., Hirokawa, T., Tatsu, Y., Ogura, A., Lu, B. and Kojima, M. (2009). Multiple functions of precursor BDNF to CNS neurons: negative regulation of neurite growth, spine formation and cell survival. Mol. Brain 2, 27. [CrossRef] [PubMed] [Google Scholar]
- Chiu, C.-T., Wang, Z., Hunsberger, J. G. and Chuang, D.-M. (2013). Therapeutic potential of mood stabilizers lithium and valproic acid: beyond bipolar disorder. Pharmacol. Rev. 65, 105–142. [CrossRef] [PubMed] [Google Scholar]
- Sato, K. (2021). Why is lithium effective in alleviating bipolar disorder? Med. Hypotheses 147, 110–484. [CrossRef] [Google Scholar]
- Agrawal, R., Kalmady, S.V. and Venkatasubramanian, G. (2017). In SilicoModel-driven Assessment of the Effects of Brain-derived Neurotrophic Factor Deficiency on Glutamate and Gamma-Aminobutyric Acid: Implications for Understanding Schizophrenia Pathophysiology. Clinical psychopharmacology and neuroscience : the official scientific journal of the Korean College of Neuropsychopharmacology 15, 115–125. [PubMed] [Google Scholar]
- Hui Poon, S., Sim, K. and Baldessarini, R. J. (2015). Pharmacological Approaches for Treatment-resistant Bipolar Disorder. Current neuropharmacology 13, 592–604. [CrossRef] [PubMed] [Google Scholar]
- Li, H., Yang, Y., Hong, W., Huang, M., Wu, M. and Zhao, X. (2020). Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal transduction and targeted therapy 5, 1–1. [CrossRef] [PubMed] [Google Scholar]
- Munawar, N. and Ahmad, A. (2021). CRISPR/Cas System: An Introduction. CRISPR Crops: The Future of Food Security, 1–35. [Google Scholar]
- Wang, S.-C., Chen, Y.-C., Lee, C.-H. and Cheng, C.-M. (2019). Opioid Addiction, Genetic Susceptibility, and Medical Treatments: A Review. Int. J. Mol. Sci. 20, 4294. [CrossRef] [Google Scholar]
- Chen, Z., Jing, D., Bath, K., Ieraci, A., Khan, T., Siao, C., Herrera, D., Toth, M. and Yang, C.). McEwen B.S. et al. (2006) Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science 314, 140–143. [CrossRef] [PubMed] [Google Scholar]
- Arosio, B., Guerini, F. R., Voshaar, R. C. O. and Aprahamian, I. (2021). Blood Brain-Derived Neurotrophic Factor (BDNF) and Major Depression: Do We Have a Translational Perspective? Front. Behav. Neurosci. 15, 626906–626906. [CrossRef] [Google Scholar]
- Naeem, M., Majeed, S., Hoque, M. Z. and Ahmad, I. (2020). Latest Developed Strategies to Minimize the Off-Target Effects in CRISPR-Cas-Mediated Genome Editing. Cells 9, 1608. [CrossRef] [Google Scholar]
- Howard, H. C., van El, C. G., Forzano, F., Radojkovic, D., Rial-Sebbag, E., de Wert, G., Borry, P., Cornel, M. C., Public and Professional Policy Committee of the European Society of Human, G. (2018). One small edit for humans, one giant edit for humankind? Points and questions to consider for a responsible way forward for gene editing in humans. European journal of human genetics : EJHG 26, 1–11. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.