Open Access
Issue
E3S Web Conf.
Volume 271, 2021
2021 2nd International Academic Conference on Energy Conservation, Environmental Protection and Energy Science (ICEPE 2021)
Article Number 04029
Number of page(s) 4
Section Environmental Materials and Solid Waste Recycling Technology
DOI https://doi.org/10.1051/e3sconf/202127104029
Published online 15 June 2021
  1. Milić S., Lulic D., Štimac, D. Non-alcoholic fatty liver disease and obesity: biochemical, metabolic and clinical presentations. World journal of gastroenterology: WJG. 20(28):9330 (2014). [Google Scholar]
  2. Dietrich P., Hellerbrand, C. Non-alcoholic fatty liver disease, obesity and the metabolic syndrome. Best practice & research Clinical gastroenterology. 28(4):637–653 (2014). [CrossRef] [PubMed] [Google Scholar]
  3. Wree A., Broderick L., Canbay A., Hoffman HM, Feldstein, A.E. From NAFLD to NASH to cirrhosis- new insights into disease mechanisms. Nat Rev Gastroenterol Hepatol; 10:627–636 (2013) [CrossRef] [Google Scholar]
  4. Huang, Y., W. Li, Z.Y. Su and A.N. Kong. The complexity of the Nrf2 pathway: beyond the antioxidant response. J. Nutr. Biochem. 26: 1401–1413 (2015). [CrossRef] [PubMed] [Google Scholar]
  5. Deshmukh P., Unni S., Krishnappa G., Padmanabhan, B. The Keap1-Nrf2 pathway: promising therapeutic target to counteract ROS-mediated damage in cancers and neurodegenerative diseases. Biophys Rev. 9(1):41–56 (2017). [CrossRef] [PubMed] [Google Scholar]
  6. Jaramillo MC, Zhang, D.D. The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev. 27(20):2179–2191 (2013). [CrossRef] [PubMed] [Google Scholar]
  7. Kuo, Hsiao-Chen Dina; Wu, Renyi; Li, Shanyi; Yang, Anne Yuqing; Kong, Ah-Ng. Anthocyanin Delphinidin Prevents Neoplastic Transformation of Mouse Skin JB6 P+ Cells: Epigenetic Re-activation of Nrf2-ARE Pathway. The AAPS Journal, 21(5) (2019). [CrossRef] [PubMed] [Google Scholar]
  8. Zhang, X., Asllanaj, E., Amiri, M., Portilla-Fernandez, E., Bramer, W.M., Nano, J., Ghanbari, M. Deciphering the role of epigenetic modifications in fatty liver disease: A systematic review. European Journal of Clinical Investigation (2020). [Google Scholar]
  9. Lee, J.H., T.O. Khor, L. Shu, Z.Y. Su, F. Fuentes and A.N. Kong. Dietary phytochemicals and cancer prevention: Nrf2 signaling, epigenetics, and cell death mechanisms in blocking cancer initiation and progression. Pulm. Pharmacol. Ther. 137: 153–171, (2013). [CrossRef] [Google Scholar]
  10. Guo Y., Yu S., Zhang C., Kong, A-NT. Epigenetic regulation of Keap1-Nrf2 signaling. Free Radical Biology and Medicine. 88:337–349 (2019). [CrossRef] [Google Scholar]
  11. Cheng D., Wu R., Guo Y., Kong, A-NT. Regulation of Keap1-Nrf2 signaling: the role of epigenetics. Current opinion in toxicology. 1:134–138 (2016). [CrossRef] [PubMed] [Google Scholar]
  12. Shen, Bingyu; Zhao, Chenxu; Wang, Yue; Peng, Yi; Cheng, Jiaqi; Li, Zheng; Wu, Lin; Jin, Meiyu; Feng, Haihua. Aucubin inhibited lipid accumulation and oxidative stress via Nrf2/HO-1 and AMPK signalling pathways. Journal of Cellular and Molecular Medicine. (2019). [Google Scholar]
  13. S. Tao, R. Justiniano, D.D. Zhang, G.T. Wondrak, The Nrf2-inducers tanshinone I and dihydrotanshinone protect human skin cells and reconstructed human skin against solar simulated UV, Redox Biol. 1 532–541 (2013). [CrossRef] [PubMed] [Google Scholar]
  14. Nakao, S.; Mabuchi, M.; Wang, S.; Kogure, Y.; Shimizu, T.; Noguchi, K.; Tanaka, A.; Dai, Y. Synthesis of resveratrol derivatives as new analgesic drugs through desensitization of the TRPA1 receptor. Bioorg. Med. Chem. Lett. 27(14), 3167–3172 (2017). [CrossRef] [Google Scholar]
  15. Kolahdouz Mohammadi, R.; Arablou, T. Resveratrol and endometriosis: In vitro and animal studies and underlying mechanisms (Review). Biomed. Pharmacother. 91 220–228 (2017). [CrossRef] [PubMed] [Google Scholar]
  16. Aldawsari, F.S.; Aguiar, R.P.; Wiirzler, L.A.M.; Aguayo-Ortiz, R.; Aljuhani, N.; Cuman, R.K.N.; Medina-Franco, J.L.; Siraki, A.G.; Velazquez-Martinez, C.A. Anti-inflammatory and antioxidant properties of a novel resveratrol-salicylate hybrid analog. Bioorg. Med. Chem. Lett. 26(5), 1411–1415 (2016). [CrossRef] [PubMed] [Google Scholar]
  17. Zhang, X., Asllanaj, E., Amiri, M., Portilla-Fernandez, E., Bramer, W.M., Nano, J. Ghanbari, M.. Deciphering the role of epigenetic modifications in fatty liver disease: A systematic review. European Journal of Clinical Investigation (2020). [Google Scholar]
  18. Pirola CJ, Gianotti TF, Burgueno AL, Rey-Funes M., Loidl CF, Mallardi P et al. Epigenetic modification of liver mitochondrial DNA is associated with histological severity of nonalcoholic fatty liver disease. Gut 62:1356–1363 (2013). [CrossRef] [PubMed] [Google Scholar]
  19. Vanessa D., Ashok Mattea, Alexander Perfilyev, Ville Männistö, Tina Rönn, Emma Nilssonb et al. Human liver epigenetic alterations in nonalcoholic steatohepatitis are related to insulin action. Epigenetics 12:287–295 (2017). [CrossRef] [PubMed] [Google Scholar]
  20. Zhao F., Zhang J., Chang, N. Epigenetic modification of Nrf2 by sulforaphane increases the antioxidative and anti-inflammatory capacity in a cellular model of Alzheimer's disease. European journal of pharmacology. 824 1–10 (2018). [CrossRef] [PubMed] [Google Scholar]
  21. Hosseini H., Teimouri M., Shabani M., et al. Resveratrol alleviates non-alcoholic fatty liver disease through epigenetic modification of the Nrf2 signaling pathway[J]. The international journal of biochemistry & cell biology, 119:105667 (2019). [CrossRef] [PubMed] [Google Scholar]
  22. Gualdani, R., M.M. Cavalluzzi, G. Lentini and S. Habtemariam. The chemistry and pharmacology of Citrus limonoids. Molecules 21: 1530–1568 (2016). [CrossRef] [Google Scholar]
  23. Lin, Zi-Han; Chan, Yen-Fan; Pan, Min-Hsiung; Tung, Yen-Chen; Su, Zheng-Yuan. Aged Citrus Peel (Chenpi) Prevents Acetaminophen-Induced Hepatotoxicity by Epigenetically Regulating Nrf2 Pathway. The American Journal of Chinese Medicine, 47(8), 1833–1851 (2019). [CrossRef] [PubMed] [Google Scholar]
  24. Chikara S., Nagaprashantha LD, Singhal J., Horne D., Awasthi, S. and Singhal, S.S.: Oxidative stress and dietary phytochemicals: Role in cancer chemoprevention and treatment. Cancer Lett 413: 122–134, (2018). [CrossRef] [PubMed] [Google Scholar]
  25. Zhou, Jia-Wei; Wang, Min; Sun, Nuan-Xin; Qing, Ying; Yin, Teng-Fei; Li, Cui; Wu, Dong. Sulforaphane-induced epigenetic regulation of Nrf2 expression by DNA methyltransferase in human Caco-2 cells. Oncology Letters, 18:2639–2647 (2019). [PubMed] [Google Scholar]
  26. Barrière, G.; Tartary, M.; Rigaud, M. Metformin: A rising star to fight the epithelial mesenchymal transition in oncology. Anticancer Agents Med. Chem. 13 333–340 (2013). [CrossRef] [PubMed] [Google Scholar]
  27. Hou, De-Xing; Fujii, Makoto; Terahara, Norihiko; Yoshimoto, Makoto. Molecular Mechanisms Behind the Chemopreventive Effects of Anthocyanidins. Journal of Biomedicine and Biotechnology, 2004(5), 321–325 (2004). [CrossRef] [Google Scholar]
  28. Seong AR, Yoo JY, Choi K., Lee MH, Lee YH, Lee J., et al. Delphinidin, a specific inhibitor of histone acetyltransferase, suppresses inflammatory signaling via prevention of NF-kB acetylation in fibroblastlike synoviocyte MH7A cells. Biochem Biophys Res Commun.. 410(3):581–586 2011. [CrossRef] [PubMed] [Google Scholar]
  29. Kuo, Hsiao-Chen Dina; Wu, Renyi; Li, Shanyi; Yang, Anne Yuqing; Kong, Ah-Ng. Anthocyanin Delphinidin Prevents Neoplastic Transformation of Mouse Skin JB6 P+ Cells: Epigenetic Re-activation of Nrf2-ARE Pathway. The AAPS Journal, 21(5), 21–83 (2019). [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.