Open Access
Issue |
E3S Web Conf.
Volume 274, 2021
2nd International Scientific Conference on Socio-Technical Construction and Civil Engineering (STCCE – 2021)
|
|
---|---|---|
Article Number | 03007 | |
Number of page(s) | 7 | |
Section | Building Constructions, Buildings and Structures | |
DOI | https://doi.org/10.1051/e3sconf/202127403007 | |
Published online | 18 June 2021 |
- D. Khodzhaev, R. Abdikarimov, N. Vatin, Nonlinear oscillations of a viscoelastic cylindrical panel with concentrated masses, ATEC Web of Conferences, 245 (2018) DOI: 10.1051/matecconf/201824501001 [Google Scholar]
- N. Vatin, A. Ivanov, Y. Rutman, S. Chernogorskiy, K. Shvetsov, Earthquake engineering optimization of structures by economic criterion, Magazine of Civil Engineering, 8(76), 67–83 (2017) DOI: 10.18720/MCE.76.7 [Google Scholar]
- J. Chen, W. Zhang, Y. F. Zhang, Equivalent continuum model and nonlinear breathing vibrations of rotating circular truss antenna subjected to thermal excitation, ThinWalled Structures, 157, 107–127 (2020) DOI: 10.1016/j.tws.2020.107127 [Google Scholar]
- J. Yang, J. Xiong, L. Ma, B. Wang, G. Zhang, L. Wu, Vibration and damping characteristics of hybrid carbon fiber composite pyramidal truss sandwich panels with viscoelastic layers, Composite Structures, 106, 570–580 (2013) DOI: 10.1016/j.compstruct.2013.07.015 [CrossRef] [Google Scholar]
- L. Liang, X. Li, J. Yin, D. Wang, W. Gao, Z. Guo, Vibration characteristics of damping pad floating slab on the long-span steel truss cable-stayed bridge in urban rail transit, Engineering Structures, 191, 92–103 (2019) DOI: 10.1016/j.engstruct.2019.04.032 [CrossRef] [Google Scholar]
- J. Huang, M. Losa, P. Leandri, S. G. Kumar, J. Zhang, Y. Sun, Potential anti-vibration pavements with damping layer: Finite element (FE) modeling, validation, and parametrical studies, Construction and Building Materials, 281, 122550 (2021) DOI: 10.1016/j.conbuildmat.2021.122550 https://linkinghub.elsevier.com/retrieve/pii/S095006182100310X (date of application: 27.02.2021) [CrossRef] [Google Scholar]
- L. Cao, J. Liu, Y. Frank Chen, Experimental study on vibration serviceability of steelconcrete composite floor, Structural Engineering and Mechanics, 74(5), 711–722 (2020) DOI: 10.12989/sem.2020.74.5.711 [Google Scholar]
- A. M. B. Martins, L. M. C. Simôes, J. H. J. O. Negräo, Optimization of extradosed concrete bridges subjected to seismic action, Computers and Structures, 245 (2021) DOI: 10.1016/j.compstruc.2020.106460 [Google Scholar]
- M. N. Kirsanov, K. Buka-Vaivade, Analytical expressions of frequencies of small oscillations of a beam truss with an arbitrary number of panels, Structural mechanics and structures, 23(4), 7–14 (2019) URL: vuz.exponenta.ru/PDF/NAUKA/Karina23.pdf (last accessed: 27.02.2021) [Google Scholar]
- R. G. Hutchinson, N. A. Fleck, The structural performance of the periodic truss, Journal of the Mechanics and Physics of Solids, 54(4), 756–782 (2006) DOI: 10.1016/jjmps.2005.10.008 [CrossRef] [Google Scholar]
- R. G. Hutchinson, N. A. Fleck, Microarchitectured cellular solids - The hunt for statically determinate periodic trusses, ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik, 85(9), 607–617 (2005) DOI: 10.1002/zamm.200410208 [CrossRef] [Google Scholar]
- F. W. Zok, R. M. Latture, M. R. Begley, Periodic truss structures, Journal of the Mechanics and Physics of Solids, 96, 184–203 (2016) DOI: 10.1016/j.jmps.2016.07.007 [CrossRef] [Google Scholar]
- B. E. Rapp, Introduction to Maple, Microfluidics: Modelling, Mechanics and Mathematics, 9–20 (2017) [CrossRef] [Google Scholar]
- K. Zotos, Performance comparison of Maple and Mathematica, Applied Mathematics and Computation, 188(2) 1426–1429 (2007) DOI: 10.1016/j.amc.2006.11.008 [CrossRef] [Google Scholar]
- D. V. Tinkov, Comparative analysis of analytical solutions to the problem of truss structure deflection, Magazine of Civil Engineering, 57(5) (2015) DOI: 10.5862/MCE.57.6 [Google Scholar]
- M. Kirsanov, Trussed Frames and Arches: Schemes and Formulas (Cambridge Scholars Publishing, UK) URL: www.cambridgescholars.com/product/978-1-5275-5976-9 (last accessed: 27.02.2021) [Google Scholar]
- V. B. Arutyunyan, Analytical calculation of the deflection street bracket for advertising, Postulat, 1 (2019 ) URL: vuz.exponenta.ru/PDF/NAUKA/Arut2019-1.pdf (last accessed: 27.02.2021) [Google Scholar]
- A. S. Ilyushin, The formula for calculating the deflection of a compound externally statically indeterminate frame, Structural mechanics and structures, 22(3), 29–38 (2019) URL: elibrary.ru/item.asp?id=41201106 (last accessed: 27.02.2021) [Google Scholar]
- R. A. Voropay, E. V. Domanov, Analytical solution of the problem of shifting a movable support of a truss of arch type in the Maple system, Postulat, 1 (2019) URL: vuz.exponenta.ru/PDF/NAUKA/VoropDom2019-1.pdf (last accessed: 27.02.2021) [Google Scholar]
- A. R. Rakhmatulina, A. A. Smirnova, Analytical calculation and analysis of planar springel truss, Structural mechanics and structures, 17(2), 72–79 (2018) URL: vuz.exponenta.ru/PDF/NAUKA/Rahm-Smirn2018-2.pdf (last accessed: 27.02.2021) [Google Scholar]
- M. N. Kirsanov, The Stress-Strain State of a Rectangular Covering Spatial Truss, Construction of Unique Buildings and Structures, 91(6), 9104–9104 (2020) DOI: 10.18720/CUBS.91.4 URL: unistroy.spbstu.ru/article/2020.91.4 (last accessed: 6.03.2021) [Google Scholar]
- K. H. Low, Modified Dunkerley formula for eigenfrequencies of beams carrying concentrated masses, International Journal of Mechanical Sciences, 42(7), 1287–1305 (2000) DOI: 10.1016/S0020-7403(99)00049-1 [CrossRef] [Google Scholar]
- C. Levy, An iterative technique based on the Dunkerley method for determining the natural frequencies of vibrating systems, Journal of Sound and Vibration, 150(1), 111–118 (1991) DOI: 10.1016/0022-460X(91)90405-9 [CrossRef] [Google Scholar]
- P. G. S. Trainor, A. H. Shah, N. Popplewell, Estimating the fundamental natural frequency of towers by Dunkerley's method, Journal of Sound and Vibration, 109(2) 285–292 (1986) DOI: 10.1016/S0022-460X(86)80009-8 [CrossRef] [Google Scholar]
- M. N. Kirsanov, E. A. Petrichenko, O. V. Vorobev, The formula for the lower estimate of the fundamental frequency of natural vibrations of a truss with an arbitrary number of panels, Construction of Unique Buildings and Structures, 94(1), 9403–9403 (2021). DOI: 10.4123/CUBS.94.3. URL: https://unistroy.spbstu.ru/article/2021.94.3 (last accessed: 6.03.2021) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.