Open Access
Issue
E3S Web Conf.
Volume 274, 2021
2nd International Scientific Conference on Socio-Technical Construction and Civil Engineering (STCCE – 2021)
Article Number 03017
Number of page(s) 10
Section Building Constructions, Buildings and Structures
DOI https://doi.org/10.1051/e3sconf/202127403017
Published online 18 June 2021
  1. V. Lyublinsky, M. Tomina. Experimental study of the strength and suppleness of a vertical welded joint, Systems. Methods. Technologies 3 (39), 154–158 (2018). DOI: 10.18324/2077-5415-2018-3-154-158. [CrossRef] [Google Scholar]
  2. B. Sokolov, E. Troshkov. Reconstruction and construction of buildings of light industry with bearing system «UIKSS», Izvestiya Vysshikh Uchebnykh Zavedenii, Seriya Teknologiya Tekstil’noi Promyshlennosti 2, (2017). [Google Scholar]
  3. S. Srisangeerthanan, M.J. Hashemi, P. Rajeev, E.F. Gad, S. Fernando. Review on Diaphragm Behaviour and Connections for Multi-Story Modular Buildings, Australasian Structural Engineering Conference, (2018). [Google Scholar]
  4. A.I. Sadykova, R.K. Akhtyamova. Resource-saving principles of modernization in the architecture of mass housing, Izvestiya KGASU 1 (47), 92–99 (2019). [Google Scholar]
  5. S.V. Nikolaev. Updating of the country's housing stock on the basis of large-panel, Housing construction 3, 3–7 (2018). [Google Scholar]
  6. J.P. Vella, R.L. Vollum, A. Jackson. Flexural behaviour of headed bar connections between precast concrete panels, Construction and Building Materials, (2017). DOI: 10.1016/j.conbuildmat.2017.07.146. [Google Scholar]
  7. A. Baghdadi, M. Heristchian, H. Kloft. Connections placement optimization approach toward new prefabricated building systems, Engineering Structures 233, (2021). DOI: 10.1016/j.engstruct.2020.111648. [Google Scholar]
  8. S.J. Menegon, J.L. Wilson, N.T.K. Lam, E.F. Gad. Experimental testing of innovative panel-to-panel connections for precast concrete building cores, Engineering Structures 207, (2020). DOI: 10.1016/j.engstruct.2020.110239. [Google Scholar]
  9. I. Hollý, I. Harvan. Connections in precast concrete elements, Key Engineering Materials 691, (2016). DOI: 10.4028/www.scientific.net/KEM.691.376. [Google Scholar]
  10. S.M.A. Inamdar. Joints and Connections in Precast Concrete Buildings, International Journal of Science and Research (IJSR) 7 (6), (2018). [Google Scholar]
  11. L. Storozhenko, D. Yermolenko, A. Nyzhnyk, I. Tegza. New design decisions of prefabricated girderless floors of multi-storeyed buildings, MATEC Web of Conferences 116, (2017). DOI: 10.1051/matecconf/201711602032. [Google Scholar]
  12. Patent 141473 of the Russian Federation, IPC E04B. Universal industrial frame construction system-Tatarstan / Sokolov B.S. Publ. 10.06.2014. Bank of Patents. Access mode: http://bankpatentov.ru/node/597203. [Google Scholar]
  13. Unified system of prefabricated monolithic ringless frame CUBE 2.5, TSNIIPI Monolit, Moscow, 1990. [Google Scholar]
  14. S. Singhal, A. Chourasia, J. Parashar. Anchorage behaviour of headed bars as connection system for precast reinforced concrete structural components, Structures 27, (2020). DOI: 10.1016/j.istruc.2020.07.043. [Google Scholar]
  15. B. Joergensen Henrik, S.G. Hansen. Experimental investigation on the shear capacity of RC beams with curtailed reinforcement, Engineering Structures 169, (2018). DOI: 10.1016/j.engstruct.2018.05.025. [Google Scholar]
  16. A. Rosyidah, I.K. Sucita, P. Sukarno, S.R.P. Sari, C. Sari. Bond strength of bar using grouting for precast concrete connection, Applied Research on Civil Engineering and Environment (ARCEE) 1 (01), (2019). DOI: 10.32722/arcee.v1i01.2311. [CrossRef] [Google Scholar]
  17. S.G. Hansen, N.E. Abildgaard, H.B. Joergensen. Strengthening strategy for the shear capacity in existing concrete structures, Structural Engineering International 28 (4), (2018). DOI: 10.1080/10168664.2018.1453765. [Google Scholar]
  18. A.A. Semendary, W.K. Hamid, E.P. Steinberg, I. Khoury. Shear friction performance between high strength concrete (HSC) and ultra high performance concrete (UHPC) for bridge connection applications, Engineering Structures 205, (2020). DOI: 10.1016/j.engstruct.2019.110122. [Google Scholar]
  19. G. Metelli, N. Bettini, G. Plizzari. Experimental and numerical studies on the behaviour of concrete sandwich panels, European Journal of Environmental and Civil Engineering 15 (10), (2011). DOI: 10.1080/19648189.2011.9723354. [Google Scholar]
  20. J. Qian, X. Song, B. Feng, Y. Zhang, H. Wang. Experimental study and finite element analysis of seismic behavior of sprayed concrete sandwich shear walls, Jianzhu Jiegou Xuebao Journal of Building Structures 34 (10), (2013). [Google Scholar]
  21. M. Serpilli, F. Clementi, S. Lenci. An experimental and numerical study on the in-plane axial and shear behavior of sprayed in-situ concrete sandwich panels, Engineering Structures 232, (2021). DOI: 10.1016/j.engstruct.2020.111814. [Google Scholar]
  22. M. Leblouba, S. Barakat, M.S.A. Ahmed, S. Al-Toubat. Shear strength at the interface of precast bridge concrete decks and girders subjected to cyclic loading with varying speeds, Engineering Structures 196, (2019). DOI: 10.1016/j.engstruct.2019.109296. [Google Scholar]
  23. J. Sagaseta, P. Francis. Out-of-plane shear strength of steel-concrete sandwich panels, (2018). DOI: 10.35789Zfib.buli.0085.ch14. [Google Scholar]
  24. B. Dal Lago, F. Biondini, G. Toniolo. Experimental tests on multiple-slit devices for precast concrete panels, Engineering Structures 167, (2018). DOI: 10.1016/j.engstruct.2018.04.035. [Google Scholar]
  25. I.N. Psycharis, H.P. Mouzakis. Shear resistance of pinned connections of precast members to monotonic and cyclic loading, Engineering Structures 41. DOI: 10.1016/j.engstruct.2012.03.051. [Google Scholar]
  26. S. Srisangeerthanan, M.J. Hashemi, P. Rajeev, E. Gad, S. Fernando. Numerical study on the effects of diaphragm stiffness and strength on the seismic response of multi-story modular buildings, Engineering Structures 163, (2018). DOI: 10.1016/j.engstruct.2018.02.048. [Google Scholar]
  27. P. Seifi, R.S. Henry, J.M. Ingham. Panel connection details in existing New Zealand precast concrete buildings, Bulletin of the New Zealand Society for Earthquake Engineering 49 Iss. 2, (2016). DOI: 10.5459/bnzsee.49.2.190-199. [CrossRef] [Google Scholar]
  28. R.A. Kayumov, I.Z. Muhamedova, V.O. Krasilnikov, B.F. Tazyukov. Development of the design procedure for structural elements of multi-storey residential building for durability, Izvestiya KGASU 4 (42), 167–173 (2017). [Google Scholar]
  29. K. Hodicky, G. Sopal, S. Rizkalla, T. Hulin, H. Stang. Experimental and Numerical Investigation of the FRP Shear Mechanism for Concrete Sandwich Panels, Journal of Composites for Construction 19 (5), (2015). DOI: 10.1061/(asce)cc.1943-5614.0000554. [Google Scholar]
  30. S. May, A. Schumann, M. Curbach. Shear strengthening of structures with carbon reinforced concrete, Proceedings of the 12th Fib International PhD Symposium in Civil Engineering, (2018). [Google Scholar]
  31. Y.O. Ôzkiliç, S. Yazman, C. Aksoylu, M.H. Arslan, L. Gemi. Numerical investigation of the parameters influencing the behavior of dapped end prefabricated concrete purlins with and without CFRP strengthening, Construction and Building Materials 275, (2021). DOI: 10.1016/j.conbuildmat.2020.122173. [Google Scholar]
  32. J.P. Vella, R. Vollum, A. Jackson. Headed bar connections between precast concrete panels loaded in bending High Tech Concrete: Where Technology and Engineering Meet, Proceedings of the 2017 Fib Symposium, (2017). DOI: 10.1007/978-3-319-59471-2_115. [Google Scholar]
  33. J.P. Vella, R.L. Vollum, A. Jackson. Investigation of headed bar joints between precast concrete panels, Engineering Structures 138, (2017). DOI: 10.1016/j.engstruct.2017.02.018. [Google Scholar]
  34. J. Daniel Ronald Joseph, J. Prabakar, P. Alagusundaramoorthy. Experimental study on the flexural behavior of insulated concrete sandwich panels with wires as shear connectors, Alexandria Engineering Journal 58 (3), (2019). DOI: 10.1016/j.aej.2019.08.005. [Google Scholar]
  35. J.P. Vella, R.L. Vollum, R. Kotecha. Headed Bar Connections Between Precast Concrete Elements: Design Recommendations and Practical Applications, Structures 15, (2018). DOI: 10.1016/j.istruc.2018.06.008. [Google Scholar]
  36. J. Di, B. Han, F. Qin. Investigation of U-bar joints between precast bridge decks loaded in combined bending and shear, Structures 27, (2020). DOI: 10.1016/j.istruc.2020.05.041. [Google Scholar]
  37. B. Joergensen Henrik, L. Christensen, J. Bendixen. Experimental study on the tensile capacity of bridge deck loop connections with shear keys FIB 2018, Proceedings for the 2018 Fib Congress: Better, Smarter, Stronger (2019). [Google Scholar]
  38. Henrik Broener Joergensen, L.C. Hoang. Strength of loop connections between precast bridge decks loaded in combined tension and bending, Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE) 25 (1), 71–80 (2015). DOI: 10.2749/101686614X14043795570697. [Google Scholar]
  39. Z.T. Deger, C. Basdogan. Empirical expressions for deformation capacity of reinforced concrete structural walls, ACI Structural Journal 116 (6), (2019). DOI: 10.14359/51716806. [CrossRef] [Google Scholar]
  40. Henrik Broener Joergensen. The influence of tolerances on the load bearing capacity of looped wire rope connections, Proceedings of the Fib Symposium 2019: Concrete -Innovations in Materials, Design and Structures, (2019). [Google Scholar]
  41. V.A. Lyublinskiy. To Test Vertical Welded Butt Joints of Panel Buildings, Building and Reconstruction 85 (5), 17–22 (2019). DOI: 10.33979/2073-7416-2019-85-5-17-22. [CrossRef] [Google Scholar]
  42. B.S. Sokolov, Y.V. Mironova. Strength and flexibility of vertical joints of wall panels using flexible loops, Housing construction 5, 60–62 (2014). [Google Scholar]
  43. Catalog PFEIFER-Memmingen 02, 26 (2017). [Google Scholar]
  44. Manual for the design of residential buildings 1989 Issue 3 part 1 Constructions of residential buildings (to SNiP 2.08.01-85), 305. [Google Scholar]
  45. E. Gorachek, V.I. Lishak, D. Pume. Strength and rigidity of butt joints ofpanel structures, The experience of the USSR and the Czech SSR Stroyizdat, 192 (1980). [Google Scholar]
  46. I.S. Derbentsev. Test results offull-scale samples of keyed joints of panels of large-panel buildings with flexible connections, Nauchny poisk: materials of the second scientific conference of postgraduates and doctoral students. Technical sciences. SUSU Publishing Center 1, 72–76 (2010). [Google Scholar]
  47. I.S. Derbentsev. Bearing capacity and deformability of key joints with loop flexible connections in joints of large-panel multi-storey buildings, Construction-formation of the life environment: collection of reports of the 16th international interuniversity scientific and practical conference, 346–352 (2013). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.