Open Access
Issue
E3S Web Conf.
Volume 274, 2021
2nd International Scientific Conference on Socio-Technical Construction and Civil Engineering (STCCE – 2021)
Article Number 03020
Number of page(s) 9
Section Building Constructions, Buildings and Structures
DOI https://doi.org/10.1051/e3sconf/202127403020
Published online 18 June 2021
  1. A. Bhaduri, D. Choudhury. Serviceability-Based Finite-Element Approach on Analyzing Combined Pile-Raft Foundation, International Journal of Geomechanics 2 (20), (2020). DOI: 10.1061/(ASCE)GM.1943-5622.0001580. [Google Scholar]
  2. B.G.S.T. Gamage, B. Kiriparan, B. Waduge, W.J.B.S. Fenrnado, P. Mendis. Piled Raft Foundation System for Tall Buildings, Lecture Notes in Civil Engineering 94, 353–368 (2021). DOI: 10.1007/978-981-15-7222-7_30. [CrossRef] [Google Scholar]
  3. R. Khuziakhmetov, D. Nurieva. Determination of the Reasons for the FallofPile Driving Machine Main Technical Near the Slope of the Foundation Pit, IOP Conf. Ser.: Mater. Sci. Eng. 890, 162304. DOI: 10.1088/1757-899X/890/1/012136. [Google Scholar]
  4. R. Mangushev, A. Osokin. Construction of Deep Foundation Ditch under a Reconstructed Multi-storey, Building on the Main Avenue of St. Petersburg Procedia Engineering 189, 622–629 (2017). DOI: 10.1016/j.proeng.2017.05.099. [Google Scholar]
  5. Ilizar T. Mirsayapov, I.V. Koroleva. Settlement’s assessment of high-rise buildinggroundbase using transformed ground deformation diagram, Proceedings of the 15th International Conference of the International Association for Computer Methods and Advances in Geomechanics, IACMAG-2017, 784–792 (2017). [Google Scholar]
  6. T. Mirsayapov Ilizar, I.V. Koroleva. Experimental and theoretical studies of bearing capacity and deformation of reinforced soil foundations under cyclic loading, Proceedings of the International symposium, Kyoto, Japan - Computer Methods and Recent Advances in Geomechanics, Balkema. Lieden, 737–742 (2014). DOI: 10.1201/b17435-127. [CrossRef] [Google Scholar]
  7. Ilizar T. Mirsayapov, I.V. Koroleva. Bearing capacity and deformation of the base of deep foundations’ ground bases. TC204 ISSMGE Seoul, Proceedings of the 8th Int. Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, 401–404 (2014). [CrossRef] [Google Scholar]
  8. Ilizar T. Mirsayapov, I.V. Koroleva. Calculation models of bearing capacity and deformation of soil foundations with vertical elements reinforced under regime cyclic loading Springer Series in Geomechanics and Geoengineering, 217729 502–507 (2019). DOI: 10.1007/978-3-319-99670-7_62. [CrossRef] [Google Scholar]
  9. Ilizar T. Mirsayapov, M.I. Shakirov. Bearing capacity and settlement of raft-pile foundations under cyclic loading, Proceedings of the 1st International Conference on Energy Geotechnics, Energy Geotechnics, 423–428 (2016). DOI: 10.1201/b21938-67. [CrossRef] [Google Scholar]
  10. Ilizar T. Mirsayapov, Marat I. Shakirov. Combined plate-pile foundations settlement calculation under cyclic loading, IOP Conf. Series: Materials Science and Engineering 890, 1–8 (2020). DOI: 10.1088/1757-899X/890/1/012069. [Google Scholar]
  11. Ilizar T. Mirsayapov, Hani M.A. Sharaf. Experimental studies of bearing capacity and settlement offoundationson clays under regime block cyclic loading, IOP Conf. Ser.: Mater. Sci. Eng. 890, 012134V (2020). [CrossRef] [Google Scholar]
  12. I.T. Mirsayapov, N.N. Aysin. Evaluation of Subgrade Vertical Deformations of the Building with the Influence of a Deep Pit, Lecture Notes in Civil Engineering 126, 51–58 (2021). DOI: 10.1007/978-3-030-64518-2_7. [CrossRef] [Google Scholar]
  13. I.T. Mirsayapov, N.N. Aysin. Subgrade vertical deformations of a building in the zone of a deep pit influence, IOP Conference Series: Materials Science and Engineering 890(1), 012071 (2020). DOI: 10.1088/1757-899X/890/1/012071. [CrossRef] [Google Scholar]
  14. D.R. Safin. Experimental studies of a weak clay base reinforced with sand piles, IOP Conf. Series: Materials Science and Engineering 962, (2020). DOI: 10.1088/1757-899X/962/3/032020. [Google Scholar]
  15. K. Fabrichnaya. Numerical study on masonry vaults reinforced by composite, IOP Conf. Ser.: Mater. Sci. Eng. 890, 012059 (2020). DOI: 10.1088/1757-899X/890/1/012059. [CrossRef] [Google Scholar]
  16. V. Pavlov, E. Khorkov, I. Mirsayapov. Experimental research of masonry arches under the influence of the movement of supports, IOP Conf. Ser.: Mater. Sci. Eng. 890, 012052 (2020). DOI: 10.1088/1757-899X/890/1/012052. [CrossRef] [Google Scholar]
  17. I. Galiev, R. Ibragimov, A. Ashrapov, O. Radaykin. Technology for reinforcing strip foundations of reconstructed brick buildings based on computer modeling, IOP Conf. Ser.: Mater. Sci. Eng. 890, 162304 (2020). DOI: 10.1088/1757-899X/890/1/012140. [CrossRef] [Google Scholar]
  18. A. Glushkov, V. Glushko. Bases and foundations of buildings at reconstruction, IOP Conference Series: Materials Science and Engineering 365(4), 042060 (2018). DOI: 10.1088/1757-899X/365/4/042060. [CrossRef] [Google Scholar]
  19. V. Kamskov. Analysis of the causes and recommendations on elimination of biological damage of structures during the repair and reconstruction of the State Biological Museum in Moscow, MATEC Web of Conferences 117, 00074 (2017). DOI: 10.1051/matecconf/201711700074. [CrossRef] [EDP Sciences] [Google Scholar]
  20. H. Singh, P. Garg, J.N. Jha. Modeling the Response of a Piled-Raft Footing: Ultimate Bearing Capacity, Iranian Journal of Science and Technology - Transactions of Civil Engineering 45 (1), 359–371 (2021). DOI: 10.1007/s40996-020-00529-z. [CrossRef] [Google Scholar]
  21. R.M. Sulaiman Al-Ne’aimi, M.S. Hussain. Numerical modeling and parametric study of piled rafts foundations, Arabian Journal of Geosciences 14(6), 447 (2021). DOI: 10.1007/s12517-021-06756-6. [CrossRef] [Google Scholar]
  22. Y.J. Tang, J. Pei, X.H. Zhao. Design and measurement of piled-raft foundations Proceedings of the Institution of Civil Engineers: Geotechnical Engineering 167 (5), 461–475 (2014). DOI: 10.1680/geng.13.00004. [CrossRef] [Google Scholar]
  23. Q.S. Mohammed Shafiqu, R.H. Sa'ur. Behavior of piled-raft foundation under earthquake loading in various types of soil, International Journal of Civil Engineering and Technology 9 (11), 2770–2781 (2018). [Google Scholar]
  24. O.S. Qaftan, T. Toma-Sabbagh, L. Weekes, L. Augusthus-Nelson. Validation of a finite element modelling approach on soil-foundation-structure interaction of a multi-storey wall-frame structure under dynamic loadings, Soil Dynamics and Earthquake Engineering 131, 106041 (2020). DOI: 10.1016/j.soildyn.2020.106041. [CrossRef] [Google Scholar]
  25. R.R. Galiullin, V.S. Izotov, D.M. Nurieva. Application of the results of numerical studies to assess the dynamic characteristics of a building with a reinforced concrete frame, Actual problems of the development of science. Collection of articles of the international scientific-practical conference. Ufa. Publishing house: Bashkir State University, 32–38 (2014). [Google Scholar]
  26. A.S. Gorodetsky, I.D. Evzerov. Computer models of structures, 344 (2005). [Google Scholar]
  27. A.S. Gorodetsky, L.G. Batrak, D.A. Gorodetsky, M.V. Laznyuk, S.V. Yusipenko. Calculation and design of structures of high-rise buildings from monolithic reinforced concrete, 106 (2004). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.