Open Access
Issue
E3S Web Conf.
Volume 274, 2021
2nd International Scientific Conference on Socio-Technical Construction and Civil Engineering (STCCE – 2021)
Article Number 05004
Number of page(s) 12
Section Construction Management
DOI https://doi.org/10.1051/e3sconf/202127405004
Published online 18 June 2021
  1. X.G. Zhao, G.W. Jiang, A. Li, L. Wang. Economic analysis waste-to-energy industry in China, Waste Management 48, 604–618 (2016). DOI: 10.1016/j.wasman.2015.10.014. [CrossRef] [Google Scholar]
  2. Z. Xin-Gang, J. Gui-Wu, L. Ang, L. Yun. Technology, cost, a performance of waste-to-energy incineration industry in China, Renewable and Sustainable Energy Reviews 55, 115–130 (2016). DOI: 10.1016/j.rser.2015.10.137. [CrossRef] [Google Scholar]
  3. M. Jakubiak. Analysis of implementing sustainable municipal solid waste management. Krakow city case study, 14th International multidisciplinary scientific geoconference SGEM Sofia, 17–24 (2014). DOI: 10.5593/SGEM2014/B52/S20.003. [Google Scholar]
  4. V.Ye. Burda. The potential of energy saving and alternative energy using in the industry, Economic Journal - XXI 1 (2-1), 45–48 (2013). [Google Scholar]
  5. M. Fernandez-Delgado, E.D. Amo-Mateos, S. Lucas, M.T. Garcia-Cubero, M. Coca. Recovery of organic carbon from municipal mixed waste compost for the production of fertilizers, Journal of Cleaner Production 265, 121805 (2020). DOI: 10.1016/j.jclepro.2020.121805. [CrossRef] [Google Scholar]
  6. B. Özer, A.S.E. Yay. Comparative life cycle analysis of municipal waste management systems: KiRKL Arely/Turkey study, Environmental Science and Pollution Research (2021). DOI: 10.1007/s11356-020-12247-0. [Google Scholar]
  7. F. Cucchiella, I. D’Adamo, P. Rosa. Urban waste to energy (WTE) plants: social analysis, JP Journal of Heat and Mass Transfer 13, (3), 421–444 (2016). DOI: 10.17654/MT013030421. [CrossRef] [Google Scholar]
  8. M.L. Miranda, B. Hale. Waste not, want not: the private and social costs of waste-to-energy production, Energy Policy 25 (6), 587–600 (1997). [CrossRef] [Google Scholar]
  9. J. Werther, T. Ogada. Sewage sludge combustion, Progress in Energy and Combustion Science 25, (1), 55–116 (1999). DOI: 10.1016/S0360-1285(98)00020-3. [Google Scholar]
  10. A. Okuwaki. Feedstock recycling of plastics in Japan, Polymer Degradation and Stability 85, (3), 981–988 (2004). DOI: 10.1016/j.polymdegradstab.2004.01.023. [CrossRef] [Google Scholar]
  11. J.C. Prata, A.L. Patricio Silva, J.P. da Costa, C. Mouneyrac, T.R. Walker, A.C. Duarte, Rocha-Santos. Solutions and integrated strategies for the control and mitigation of plastic and microplastic pollution, Int. Environ. Res. Public Health 16, 1–19 (2019). DOI: 10.3390/ijerph16132411. [Google Scholar]
  12. N.A. Rorrer, S. Nicholson, A. Carpenter, M.J. Biddy, N.J. Grundl, G.T. Beckham Combining Reclaimed PET with Bio-based Monomers Enables Plastics Upcycling, Joule 3, 1006–1027 (2019). DOI: 10.1016/j.joule.2019.01.018. [CrossRef] [Google Scholar]
  13. S. Jaiswal, B. Sharma, P. Shukla. Integrated approaches in microbial degradation of plastics, Environ. Technol. Innov. 17, 100567 (2020). DOI: 10.1016/j.eti.2019.100567. [CrossRef] [Google Scholar]
  14. A.S. Ashoor, M.M. Kareem, M.N. Al-Baiati. Improved asphalt binder using recycle polyethylene terephthalate polymer, IOP Conf. Ser. Mater. Sci., 571 (2019). DOI: 10.1088/1757-899X/571/1/012094. [Google Scholar]
  15. A.F. Ahmad, A.R. Razali, I.S.M. Razelan, S.S.A. Jalil, M.S.M. Noh, A.A. Idris. Utilization of polyethylene terephthalate (PET) in bituminous mixture for improved performance of roads, IOP Conf. Ser. Mater. Sci., 203 (2017). DOI: 10.1088/1757-899X/203/1/012005. [Google Scholar]
  16. I.T.R. Yuliusman, Sanal A. Nasruddin, A. Bernama, F. Haris. Preparation of activated carbon from waste plastics polyethylene terephthalate as adsorbent in natural gas storage, J. Phys. Conf. Ser. 7, 1–6 (2017). DOI: 10.1088/1757-899X/176/1/012055. [Google Scholar]
  17. F.K. Alqahtani, I. Zafar. Characterization of processed lightweight aggregate and its effect on physical properties of concrete, Constr. Build. Mater. 230, 116992 (2020). DOI: 10.1016/j.conbuildmat.2019.116992. [CrossRef] [Google Scholar]
  18. S. Agyeman, N.K. Obeng-Ahenkora, S. Assiamah, G. Twumasi. Exploiting recycled plastic waste as an alternative binder for paving blocks production, Case Stud. Constr. Mater. 11, e00246 (2019). DOI: 10.1016/j.cscm.2019.e00246. [Google Scholar]
  19. A.K. Jassim. Recycling of Polyethylene Waste to Produce Plastic Cement, Procedia Manuf. 8, 635–642 (2017). DOI: 10.1016/j.promfg.2017.02.081. [CrossRef] [Google Scholar]
  20. P.O. Awoyera, A. Adesina. Plastic wastes to construction products: Status, limitations and future perspective, Case Stud. Constr. Mater. 12, e00330 (2020). DOI: 10.1016/j.cscm.2020.e00330. [Google Scholar]
  21. A.A. Dudolin, A.N. Efremov. Problems and prospects creating an environmentally friendly WTE plant, Journal of Physics: Conf. Series. 3rd Conf. «Problems of Thermal Physics and Power Engineering» - Actual Issues of Thermal Power Engineering and Thermal Engineering, 042061 (2020). DOI: 10.1088/1742-6596/1683/4/042061. [Google Scholar]
  22. M.A. Shtefan, J.M. Elizarova. Investment project efficiency and risk evaluation: an integrated approach, Business informatics 4, (46), 54–65 (2018). DOI: 10.17323/19980663.2018.4.54.65. [CrossRef] [Google Scholar]
  23. A.B. Chechulin, A.L. Kuznecov, V.P. Grahov, M.B. Perfil'eva. Communication and marketing technologies of territory promotion: forming professional market in Russia, Science and technique 19, (2), 125–129 (2020). DOI: 10.21122/2227-1031-2020-19-2-125-129. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.