Open Access
Issue |
E3S Web Conf.
Volume 274, 2021
2nd International Scientific Conference on Socio-Technical Construction and Civil Engineering (STCCE – 2021)
|
|
---|---|---|
Article Number | 07001 | |
Number of page(s) | 10 | |
Section | Energy Efficiency and Thermal Protection of Buildings | |
DOI | https://doi.org/10.1051/e3sconf/202127407001 | |
Published online | 18 June 2021 |
- V.D. Sultimova. Prospects for the disposal of ash and slag waste of thermal power plants, Materials of the National Conference, 10–14 (2019). [Google Scholar]
- I.Y. Soktoev, E.A. Oksahaeva, D.R. Damdinova. Prospects for the use of gold waste heat power engineering in the production of building heat insulating materials, Bulletin of the Buryat State University. Chemistry. Physics 4, 36–40 (2018). [Google Scholar]
- I.Yu. Danilovich, N.A. Scanavi. The use of fuel slags and ash for the production of building materials, (1988). [Google Scholar]
- E.R. Barieva, E.A. Korolev, N.Kh. Galimullina, M.A. Fischenko. Assessment of the ecological hazard of ashlash waste of Kazan CHPP-2, Energy problems 5-6, 108–111 (2018). [Google Scholar]
- U.A. Gaziev, H.A. Akramov. Waste industry in the production of building materials and products (2003). [Google Scholar]
- M. Juengeret. Supplementary cementitious materials for concrete: Characterization needs, Materials Research Society Symposium Proceedings 1488, 106–120 (2012). DOI: 10.1557/opl.2012.1536. [Google Scholar]
- S. Abbas, M.A. Saleem, S.M.S. Kazmi, M. J. Munir. Production of sustainable clay bricks using waste fly ash: Mechanical and durability properties, Journal of Building Engineering 14, 7–14 (2017). DOI: 10.1016/j.jobe.2017.09.008. [CrossRef] [Google Scholar]
- E.V. Dunaevskaya. Application of heat waste waste for the manufacture of small-piece wall blocks, Young people and science: Collection of materials VI All-Russian Scientific and Technical Conference of Students, graduate students and young scientists, (2011). [Google Scholar]
- L. Zhang. Production of bricks from waste materials - A review, Construction and Building Materials 47, 643–655 (2013). DOI: 10.1016/j.conbuildmat.2013.05.043. [CrossRef] [Google Scholar]
- M. Achik, H. Benmoussa, A. Oulmekki et al. Evaluation of technological properties of fired clay bricks containing pyrrhotite ash, Construction and Building Materials 269, 121312 (2021). DOI: 10.1016/j.conbuildmat.2020.121312. [CrossRef] [Google Scholar]
- A.A. Shakir, M.H. Wan Ibrahim, N.H. Othman, A. Ahmed Mohammed, M.K. Burhanudin. Production of eco-friendly hybrid blocks, Construction and Building Materials 257, 119536 (2020). DOI: 10.1016/j.conbuildmat.2020.119536. [CrossRef] [Google Scholar]
- I.Yu. Soktoeva, E.A. Oksahaeva, D.R. Damdinova. Features of the technological process of obtaining foam glass based on gastrointestinal materials and glass, Bulletin of the Buryat State University. Chemistry. Physics 4, 41–45 (2018). DOI: 10.18101/2306-23632018-4-36-40. [Google Scholar]
- N.K. Manakova. Foams based on industrial waste, The Eurasian Scientific Journal 12 (4), (2020). DOI: 10.15862/21savn420. [CrossRef] [Google Scholar]
- G.A. Medvedeva, A.F. Lifanteva, A.A. Yusupova, R.R. Kashapov. Residues from fuel and power industries and glass industry as a basis of building materials, IOP Conference Series: Materials Science and Engineering 890, 012095 (2020). DOI: 10.1088/1757-899X/890/1/012095. [CrossRef] [Google Scholar]
- R. Siddique. Waste materials and by-products in concrete, (2008). [Google Scholar]
- R.S. Blissett, N.A. Rowson. A review of the multi-component utilisation of coal fly ash, Fuel 97, 1–23 (2012). DOI: 10.1016/j.fuel.2012.03.024. [CrossRef] [Google Scholar]
- D. Zoric, D. Lazar, O. Rudic, M. Radeka, J. Ranogajec, H. Hirsenberger. Thermal conductivity of lightweight aggregate based on coal fly ash, Journal of Thermal Analysis and Calorimetry 110(1), 489–495 (2012). DOI: 10.1007/s10973-012-2339-x. [CrossRef] [Google Scholar]
- K.B. Ren, D.A. Kagi. Upgrading the durability of mud bricks by impregnation, Building and Environment 30(3), 433–440 (1995). DOI: 10.1016/0360-1323(94)00056-X. [CrossRef] [Google Scholar]
- A.N. Volgusushev, N.F. Secerterkin. Production and application of sulfur concrete, (1991). [Google Scholar]
- G.A. Medvedeva, R.T. Akhmetova, V.F. Stroganov, L.R. Dirgamova. Technology of utilization of technogenicashlak and sulfuric waste in the manufacture of silicate concrete concrete, News of the Kazan State University of Architecture and Engineering 3(29), 167–171 (2014). [Google Scholar]
- E.V. Korolev, A.P. Proshin, V.T. Khrulev. Sulfur-based construction materials, (2003). [Google Scholar]
- G.A. Medvedeva, R.T. Akhmetova, A.G. Labutkin. Use of wastes from thermal power industry in manufacturing of high-strength sulfur concrete, Research Journal of Pharmaceutical, Biological and Chemical Sciences 7, 1969–1981 (2016). [Google Scholar]
- A.A. Yusupova, G.A. Medvedeva, A.A. Bobryshev. Technology and properties of composite materials with modifier of chloride aluminum, Materials Science Forum 946, 97–102 (2019). DOI: 10.4028/www.scientific.net/msf.946.97. [CrossRef] [Google Scholar]
- L.N. Shafigullin, A.A. Yusupova, G.A. Medvedeva. Influence of aluminum coating technology on industrial waste management, Helix 9(5), 5442–5447 (2019). DOI: 10.29042/2019-5442-5447. [CrossRef] [Google Scholar]
- G.I. Greenfeld, E.V. Korkina, P.P. Pustushkov, N.V. Pavlenko, I.V. Erofeeva. System protecting designs, provides increased energy savings in buildings, Scientific Herald of the Voronezh State University of Architecture and Civil Engineering. Construction and Architecture 3(43), 25–35 (2016). [Google Scholar]
- O.B. Barysheva, Y.K. Khabibullin. Investigation of the basic characteristics of the autoclaved gas industry, Izvestija KGASU 1(35), 118–122 (2016). [Google Scholar]
- M. Attalla. Experimental investigation of heat transfer and pressure drop of SiOfwater nanofluid through conduits with altered cross-sectional shapes, Heat and Mass Transfer 55(12), 3427–3442 (2019). DOI: 10.1007/s00231-019-02668-0. [CrossRef] [Google Scholar]
- P.P. Pastushkov, N.V. Pavlenko, A.V. Zherebtsov. Field studies of thermophysical characteristics of heat-insulating materials as part of facade systems, Industrial and civil construction 12, 56–60 (2019). [Google Scholar]
- V.A. Maskaikin. Numerical method for studying temperature regimes of an inhomogeneous, structured body, MAI Proceedings 115, 19 (2020). DOI: 10.34759/trd-2020-115-19. [Google Scholar]
- D.V. Kraynov, R.A. Sadykov. Determination of additional heat fluxes through the elements of a fragment of the enclosing structure, Housing construction 6, 10–12 (2012). [Google Scholar]
- V.V. Kozlov. Questions of the accuracy of calculating the reduced resistance to heat transfer and temperature fields, Building and reconstruction 3(77), 62–74 (2018). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.