Open Access
Issue
E3S Web Conf.
Volume 274, 2021
2nd International Scientific Conference on Socio-Technical Construction and Civil Engineering (STCCE – 2021)
Article Number 08003
Number of page(s) 7
Section Heat Supply, Ventilation, Air Conditioning, Gas Supply, and Lighting
DOI https://doi.org/10.1051/e3sconf/202127408003
Published online 18 June 2021
  1. A. Yerominv, A. Kolosov. Modeling of energy efficient solutions regarding the heating system and the facade heat insulation in the implementation of thermomodernization, Eastern-European Journal of Enterprise Technologies 8, 91 (2018). [Google Scholar]
  2. T. Teleszewski, D. Krawczyk, A. Rodero. Reduction of heat losses using quadruple heating pre-insulated networks: A case study, Energies 12, 24 (2019). [CrossRef] [Google Scholar]
  3. I. Akhmetova, N. Chichirova. Mathematical modeling of the process of determining the standards for process losses in the transfer of thermal energy of the coolant, Journal of Physics: Conference Series 891, 1 (2017). [Google Scholar]
  4. E. Biryuzova, A. Glukhanov. Improving energy efficiency and reliability of heating networks through the use of multilayer thermal insulation structures, IOP Conference Series: Materials Science and Engineering 962, 3 (2020). [CrossRef] [Google Scholar]
  5. V. Krashchenko, N. Tretyakov, A. Chernov. Modeling and thermal calculation of a pipeline insulation system, E3S Web of Conferences 164, 14021 (2020). [CrossRef] [EDP Sciences] [Google Scholar]
  6. A. Kluczek, P. Olszewski. Energy audits in industrial processes, Journal of Cleaner Production 4, 142 (2017). [Google Scholar]
  7. I. Akhmetova, N. Chichirova, O. Derevianko. Revisiting heat losses calculation at district heating network, International Journal of Civil Engineering and Technology 8 (12), 694–702 (2017). [Google Scholar]
  8. Yu.M. Varfolomeev, O.Ya. Kokorin. Heating and heating networks (Moscow: INFRAM), 480 (2006). [Google Scholar]
  9. A. Dalla Rosa, Li H., S. Svendsen. Method for optimal design ofpipes for low-energy district heating, with focus on heat losses, Energy 36 (5), 2407–2418 (2011). [CrossRef] [Google Scholar]
  10. A. Helge, W. Sven. Essential improvements in future district heating systems, Energy Procedia 116, 217–225 (2017). [CrossRef] [Google Scholar]
  11. I. Zakirova, N. Chichirova. Experimental determination of effectiveness of thermal insulation of xperimental determination of effectiveness of thermal insulation of heating networks involving application of thin-film coatings, Safety and Reliability of Power Industry 10 (2), 143–149 (2017). [CrossRef] [Google Scholar]
  12. E. Biryuzova, A. Glukhanov. The influence of the method of laying pipelines on the energy efficiency of the heating network, Construction and Geotechnics 10 (2), 59–66 (2019). [CrossRef] [Google Scholar]
  13. Y.V. Nemirovsky, A.S. Mozgova. Two-dimensional steady-state heat conduction problem for heat networks, J. Phys.: Conf. Ser. 1359, 012138 (2019). [CrossRef] [Google Scholar]
  14. Y.V. Nemirovsky, A.S. Mozgova. Thermal conductivity of cylindrical tanks for backup fuel of boiler rooms, J. Phys.: Conf. Ser. 1382, 012139 (2019). [CrossRef] [Google Scholar]
  15. Y.V. Nemirovsky, A.S. Mozgova. Problems of thermal conductivity for storage tanks of liquefied gases and oil products, Journal of Physics: Conf. Series 1128, 012131 (2018). [CrossRef] [Google Scholar]
  16. Y.V. Nemirovsky, A.S. Mozgova. Problems of thermal conductivity of heat networks, Proceedings of the XI all-Russian scientific and technical conference «Topical issues of architecture and construction» (Novosibirsk: Novosibirsk state University of architecture and civil engineering), 9–15 (2018). [Google Scholar]
  17. Y.V. Nemirovsky, A.S. Mozgova. Determination of heat losses in the section of the layered pipeline of heat networks, Bulletin of the Yakovlev Chuvash State Pedagogical University. Series: Mechanics of Limit State 2, 23–32 (2017). [Google Scholar]
  18. A.S. Mozgova, A.V. Surikov. Energy inspection of boilers and heating networks, New Archit. Des. Build. Struct. Reconstr. Mater. III Int. (IX all-russian) Conf. 474–480 (2016) [Google Scholar]
  19. A. Mozgova, T. Shennikova. Determination of the real energy efficiency of the inlet ventilation air heater and air curtain, IOP Conf. Ser. Mater. Sci. Eng. 890, 012147 (2020). [CrossRef] [Google Scholar]
  20. A.S. Mozgova. Problems of thermal conductivity of closed pressure vessels, Sci. Ind. defense. Proc. XIX All-Russian Sci. Tech. Conf. 4, 63–65 (2018). [Google Scholar]
  21. A.S. Mozgova, T.V. Shchennikova. Test Results for Ventilation Units, IOP Conf. Ser. Mater. Sci. Eng. 1079, 042049 (2021). [CrossRef] [Google Scholar]
  22. A. Mozgova. Inspection of treatment systems at cogeneration plant, Contemporary Problems of Architecture and Construction, 381–384 (2021). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.