Open Access
Issue |
E3S Web Conf.
Volume 274, 2021
2nd International Scientific Conference on Socio-Technical Construction and Civil Engineering (STCCE – 2021)
|
|
---|---|---|
Article Number | 12006 | |
Number of page(s) | 7 | |
Section | The Language of Construction | |
DOI | https://doi.org/10.1051/e3sconf/202127412006 | |
Published online | 18 June 2021 |
- M.I. Solnyshkina, E.N. Solovova, E.V. Harkova, A.S. Kiselnikov, Language Assessment course: Structure, Delivery and Learning Outcomes, International Journal of Environmental & Science Education 11, 6, 1223–1229 (2016) DOI: 10.12973/ijese.2016.392a [Google Scholar]
- M.I. Solnyshkina, A.S. Kiselnikov, Text complexity: Study phases in Russian linguistics, in Vestnik Tomskogo Gosudarstvennogo Universiteta, Filologiya 6, 38, 86–99 (2015) DOI: 10.17223/19986645/38/7 [CrossRef] [Google Scholar]
- W.D. Callister, Jr. and D.G. Rethwisch, Fundamentals of Materials Science and Engineering, An Integrated Approach, 5th ed. 2015. [Google Scholar]
- I.M. Zharskij, N.P. Ivanova, D.V. Kuis, N.A. Svidunovich, Material Science (Materailovedenie) (2015) [Google Scholar]
- D.S. McNamara, A.C. Graesser, P.M. McCarthy, Z. Cai, Automated evaluation of text and discourse with Coh-Metrix, (Cambridge University Press, Cambridge, 2014) [Google Scholar]
- M. Dascalu, G. Gutu, S. Ruseti, I.C. Paraschiv, P. Dessus, D.S. McNamara, S.A. Crossley, S. Trausan-Matu, ReaderBench: A Multi-lingual Framework for Analyzing Text Complexity, EC-TEL, 495–499 (2017) [Google Scholar]
- S. Latifi, M. Gierl, Automated scoring of junior and senior high essays using Coh-Metrix features: Implications for large-scale language testing, Language Testing, 38, 1, 62–85 (2021) DOI: 10.1177/0265532220929918 [CrossRef] [Google Scholar]
- Y. Chang, D. Stone, Why does decomposed audit proposal readability differ by audit firm size? A Coh-Metrix approach, Managerial Auditing Journal 34, 8, 895–923 (2019). DOI: 10.1108/MAJ-02-2018-1789 [CrossRef] [Google Scholar]
- S.A. Crossley, K. Kyle, Assessing writing with the tool for the automatic analysis of lexical sophistication (TAALES). Assessing Writing 38, 46–50 (2018) DOI: 10.1016/j.asw.2018.06.004 [CrossRef] [Google Scholar]
- V.C. Yuah, S. Dongkwang, E.K. Go, Comparing L2 learners’ writing against parallel machine-translated texts: Raters ’ assessment, linguistic complexity and errors, System, 96 (2021) DOI: 10.1016/j.system.2020.102408. [Google Scholar]
- C. MacArthur, A. Jennings, Z. Philippakos, Which linguistic features predict quality of argumentative writing for college basic writers, and how do those features change with instruction? Reading and Writing 32, 6, 1553–1574 (2019) DOI: 10.1007/s11145-018-9853-6 [CrossRef] [Google Scholar]
- V.S. Cioaca, M. Dascalu, D.S. McNamara, Extractive Summarization using Cohesion Network Analysis and Submodular Set Functions 22nd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 161–168 (2020) DOI: 10.1109/SYNASC51798.2020.00035 [CrossRef] [Google Scholar]
- C. Polio, H. Yoon, The reliability and validity of automated tools for examining variation in syntactic complexity across genres, International Journal of Applied Linguistics (United Kingdom), 28, 1, 165–188 (2018) DOI: 10.1111/ijal.12200 [CrossRef] [Google Scholar]
- S. Crossley, S. Skalicky, M. Dascalu, D. McNamara, K. Kyle, Predicting Text Comprehension, Processing, and Familiarity in Adult Readers: New Approaches to Readability Formulas. Discourse Processes, 54, 5-6, 340–359 (2017) DOI: 10.1080/0163853X.2017.1296264 [CrossRef] [Google Scholar]
- S. Valizadeh-Haghi, Y. Khazaal, S. Rahmatizadeh, Health websites on COVID-19: are they readable and credible enough to help public self-car, Journal of the Medical Library Association, 109(1), 75–83 (2021) DOI: 10.5195/jmla.2021.1020 [Google Scholar]
- R.I. Zraick, M. Azios, M.M. Handley, M.L. Bellon-Harn, V. Manchaiah, Quality and readability of internet information about stuttering, Journal of Fluency Disorders, 67 (2021) DOI: 10.1016/j.jfludis.2020.105824 [CrossRef] [PubMed] [Google Scholar]
- E.M. Grose, C.P. Holmes, K.A. Aravinthan, et al., Readability and quality assessment of internet-based patient education materials related to nasal septoplasty, J of Otolaryngol - Head & Neck Surg, 50(16) (2021) DOI: 10.1186/s40463-021-00507-z [CrossRef] [Google Scholar]
- A. Vincze, N.H. Baranyai, H. Zsiboracs, S. Csanyi, I. Haber, G. Pintér, Communicating Renewable Energy in the National Action Plans of the Member States of the European Union, Sustainability, 12, 970 (2020) DOI: 10.3390/su12030970 [CrossRef] [Google Scholar]
- A. Crossley, D. McNamara, Text readability and intuitive simplification. A comparison of readability formulas, Reading in a Foreign Language 23, 1, 84–101 (2011) [Google Scholar]
- J.P. Kincaid, R.P. Fishburne, R.L. Rogers, B.S. Chissom, Derivation of new readability formulas (Automated Readability Index, Fog Count and Flesch Reading Ease Formula) for navy enlisted personnel. Naval technical training command, (Memphis, TN: Naval Air Station, 1975) [Google Scholar]
- V. Solovyev, V. Ivanov, M. Solnyshkina, Assessment of Reading Difficulty Levels in Russian Academic Texts: Approaches and Metrics, Journal of Intelligent and Fuzzy Systems, 3049–3058 (2018) DOI: 10.3233/JIFS-169489 [CrossRef] [Google Scholar]
- Readability test tool, https://www.webfx.com/tools/read-able/check.php, last accessed 2021/04/16 [Google Scholar]
- RuLingva, https://rulingva.kpfu.ru/, last accessed 2021/04/16 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.