Open Access
Issue
E3S Web Conf.
Volume 274, 2021
2nd International Scientific Conference on Socio-Technical Construction and Civil Engineering (STCCE – 2021)
Article Number 13002
Number of page(s) 7
Section Transport System Development
DOI https://doi.org/10.1051/e3sconf/202127413002
Published online 18 June 2021
  1. K. Degirmenci, H. Michael Breitner. Consumer purchase intentions for electric vehicles: is green more important than price and range, Transportation Research Part D 51, 250–260 (2017). DOI: 10.1016/j.trd.2017.01.001. [CrossRef] [Google Scholar]
  2. A.C. Mersky, F. Sprei, C. Samaras, Z. Qian. Effectiveness of incentives on electric vehicle adoption in Norway Transportation Research Part D 46, 56–68 (2016). DOI: 10.1016/j.trd.2016.03.011. [Google Scholar]
  3. J. Yang, J. Dong, L. Hu. A data-driven optimization-based approach for siting and sizing of electric taxi charging stations Transportation Research Part C 77, 462–477 (2017). DOI: 10.1016/j.trc.2017.02.014. [Google Scholar]
  4. R. Iacobucci, B. McLellan, T. Tezuka. Modeling shared autonomous electric vehicles: potential for transport and power grid integration Energy 158, 148–163 (2018). DOI: 10.1016/j.energy.2018.06.024. [Google Scholar]
  5. G. Ala, G.D. Filippo, F. Viola, G. Giglia, A. Imburgia, P. Romano, V. Castiglia, F. Pellitteri, G. Schettino, R. Miceli. Different scenarios of electric mobility: current situation and possible future developments of fuel cell vehicles in Italy Sustainability 12, 564 (2020). DOI: 10.3390/su12020564. [Google Scholar]
  6. C.W. Hsu, K. Fingerman. Public electric vehicle charger access disparities across race and income in California. Transport Policy 100, 59–67 (2021). DOI: 10.1016/j.tranpol.2020.10.003. [Google Scholar]
  7. T.T. Simon, D.J. Brian, J.M. Huya-Kouadiob, C. Houchinsb, D.A. DeSantisb, R. Ahluwaliac, A.R. Wilsona, G. Kleend, D. Papageorgopoulosa. Direct hydrogen fuel cell electric vehicle cost analysis: system and highvolume manufacturing description, validation and outlook Journal of power sources 399, 304–313 (2018) DOI: 10.1016/jjpowsour.2018.07.100. [Google Scholar]
  8. Q. Xu, J. Huang, Y. Han, Y. Yang, L. Luo A study on electric vehicles participating in the load regulation of urban complexes Energies 13 (11), 2339 (2020) DOI: 10.3390/en13112939. [Google Scholar]
  9. A. Ajanovic, A. Glatt. Wirtschaftliche und ökologische aspekte der elektromobilität Elektrotechnik and informationstechnik 137/4–5, 136–146 (2020). DOI: 10.1007/s00502-020-00812-x. [Google Scholar]
  10. K. Seddig, P. Jochem, W. Fichtner. Integrating renewable energy sources by electric vehicle fleets under uncertainty Energy 141, 2145–2153 (2017). DOI: 10.1016/j.energy.2017.11.140. [Google Scholar]
  11. F. Triel, T.E. Lipman. Modeling the future California electricity grid and renewable energy integration with electric vehicles Energies 13, 5277 (2020). DOI: 10.3390/en13205277. [Google Scholar]
  12. J. Zhu, Z. Yang, Y. Guo, J. Zhang, H. Yang. Short-term load forecasting for electric vehicle charging stations based on deep learning approaches, Applied sciences 9, 1723 (2019). DOI: 10.3390/app9091723. [CrossRef] [Google Scholar]
  13. X. Sun, Z. Li, X. Wang, C. Li. Technology development of electric vehicles: a review Energies 13, 90 (2019). DOI: 10.3390/en13010090. [Google Scholar]
  14. A. Mielea, J. Axsena, M. Wolinetza, E. Mainec, Z. Longa. The role of charging and refueling infrastructure in supporting zero-emission vehicle sales, Transportation Research Part D 81, (2020). DOI: 10.1016/j.trd.2020.102275. [Google Scholar]
  15. K. Tucki, O. Orynycz, A. Swi'c, M. Mitoraj-Wojtanek. The development of electromobility in Poland and EU States as a tool for management of CO2 emissions. Energies 12, 2942 (2019). DOI: 10.3390/en12152942. [CrossRef] [Google Scholar]
  16. T. Gnanna, S. Funkea, N. Jakobssonb, P. Plötza, F. Spreib, A. Bennehag. Fast charging infrastructure for electric vehicles: today’s situation and future needs 62, 314–329 (2018). DOI: 10.1016/j.trd.2018.03.004. [Google Scholar]
  17. M. Kama, W. Sarkb, F. Alkemade. Multiple roads ahead: how charging behavior can guide charging infrastructure roll-out policy, Transportation Research Part D, 85 (2020). DOI: 10.1016/j.trd.2020.102452. [Google Scholar]
  18. F. Orsi. On the sustainability of electric vehicles: what about their impacts on land use? Sutainable cities and society 66, (2021). DOI: 10.1016/j.scs.2020.102680. [Google Scholar]
  19. Z. Chena, F. He, Y. Yin. Optimal deployment of charging lanes for electric vehicles in transportation networks, Transportation Research Part B 91, 344–365 (2016). DOI: 10.1016/j.trb.2016.05.018. [CrossRef] [Google Scholar]
  20. M.H. Amini, O. Karabasoglu. Optimal operation of interdependent power systems and electrified transportation networks, Energies 11, 196 (2018). DOI: 10.3390/en11010196. [CrossRef] [Google Scholar]
  21. T. Thananusak, P. Punnakitikashem, S. Tanthasith, B. Kongarchapatara. The development of electric vehicle charging stations in thailand: policies, players, and key issues, World Electr. Veh. J. 12, 2 (2021). DOI: 10.3390/wevj12010002. [Google Scholar]
  22. M.V. Komarova. Analysis of the electric vehicle market in Russia Innovations, The science. Education 21, 276–281 (2020). [Google Scholar]
  23. E.S. Rahmatullina, I.V. Morchkova. Developing a strategy for petrol station development, Proceedings of the international scientific and practical conference «Intelligent city: sustainability, management, architecture, renovation, technologies», 324–330 (2018). [Google Scholar]
  24. D.A. Rybnikov. Charging infrastructure development: a reasonable balance, Development vector 6, 51 (2018). [Google Scholar]
  25. A.L. Bolsherotov. Methodological foundations for assessing the environmental safety of construction in urbanized areas, News of the KSUAE 2, 222 (2020). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.