Open Access
Issue
E3S Web Conf.
Volume 280, 2021
Second International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters (ICSF 2021)
Article Number 03007
Number of page(s) 7
Section Sustainable Building and Architecture
DOI https://doi.org/10.1051/e3sconf/202128003007
Published online 30 June 2021
  1. Hidrotekhnichni sporudy. Osnovni polozhennia (Hydraulic structures. Basic postulate). DBN V.2.4-3:2010 (DP Ukrarkhbudinform, Kyiv, 2010), p. 37 [Google Scholar]
  2. Zahalni pryntsypy zabezpechennia nadiinosti ta konstruktyvnoi bezpeky budivel i sporud (General principles for reliability and constructive safety ensuring of buildings and civil engineering works). DBN V.1.2–14:2018 (DP Ukrarkhbudinform, Kyiv, 2018), p. 30 [Google Scholar]
  3. Federal Guidelines for Dam Safety Risk Management. FEMA P-1025, Catalog №14353-1 (RAMPP, URS Corporation, Dewberry, 2015), p. 49 [Google Scholar]
  4. Еngineering guidelines for the evaluation of нydropower. Chapter 1 (FERC, Washington, 2016), р. 77 [Google Scholar]
  5. Probabilistic Seismic Hazard Analysis. Chapter R20 (DRAFT, Washington, 2014), р. 84 [Google Scholar]
  6. Working aid for the DIN 19700 for flood reservoirs (JVA Mannheim @ Druckerei, Baden-Wurttemberg, 2007), р. 143 [Google Scholar]
  7. Guide to interpretive documents for essential requirements, to EN 1990 and to application and use of Eurocodes. Handbook 1 (Garston, UK Watford, 2004), p. 155 [Google Scholar]
  8. Guide to the basis of structural reliability and risk engineering related to Eurocodes, supplemented by practical examples 1990 and to application and use of Eurocodes. Handbook 2 (Prague, 2005), p. 254 [Google Scholar]
  9. Probabilistic model code. Basis of design. Part 1 (JCSS, JCSS working materials, 2000), p. 62, http://www.jcss.ethz.ch. Accessed 12 May 2017 [Google Scholar]
  10. A.I. Vaynberg, Nadezhnost i bezopasnost gidrotehnicheskih sooruzheniy (Reliability and safety of hydraulic structures) (Tyazhpromavtomatika, Kharkov, 2008), p. 304 [Google Scholar]
  11. A.O. Mozgovyi, Dissertation, Ukrainian State University of Railway Transport, 2019 [Google Scholar]
  12. A. Mozgovyi, Analiz statystychnykh danykh temperaturnykh vplyviv po hidrovuzlakh Dniprovskoho kaskadu. Vybir parametriv funktsii rozpodilu temperaturnykh vplyviv za statystychnymy danymy (Analysis of statistical data of temperature effects on hydroelectric stations of the Dnieper cascade. Selection of parameters of temperature effect distribution function according to statistical data). Visnyk Natsionalnoho universytetu vodnoho hospodarstva ta pryrodokorystuvannia 1, 53, 119–126 (2011) [Google Scholar]
  13. A. Mozgovyi, Doslidzhennia koreliatsiinoi zalezhnosti temperaturnykh vplyviv za statystychnymy danymy po hidrovuzlakh Dniprovskoho kaskadu (Study of the correlation of temperature effects according to statistical data at hydropower schemes of the Dnieper cascade). Visnyk Odeskoi derzhavnoi akademii budivnytstva ta arkhitektury 72, 135–145 (2018) [Google Scholar]
  14. E.S. Ventcel, Teoriya veroyatnostey (Probability theory) (Vysshaya shkola, Moskva, 1998), p. 576 [Google Scholar]
  15. M.K. Simon, Probability distributions involving Gaussian random variables: A handbook for engineers and scientists (Springer Science & Business Media, 2007), p. 200 [Google Scholar]
  16. J.J. Shynk, Probability, random variables, and random processes: theory and signal processing applications (John Wiley & Sons, 2012), p. 768 [Google Scholar]
  17. K.W. Fang, S. Kotz, K.W. Ng, Symmetric multivariate and related distributions (CRC Press, Boca Raton, London, New York, 2018), p. 220 [Google Scholar]
  18. K. Krishnamoorthy, Handbook of statistical distributions with applications (CRC Press, Boca Raton, London, New York, 2016), p. 344 [Google Scholar]
  19. N. Balakrishnan, W.S. Chen, Handbook of tables for order statistics from lognormal distributions with applications (Springer Science & Business Media, 1999), p. 868 [Google Scholar]
  20. S. Ghahramani, Fundamentals of probability: with stochastic processes (CRC Press, Boca Raton, London, New York, 2018), p. 631 [Google Scholar]
  21. E.L. Crow, K. Shimizu, Lognormal distributions (Marcel Dekker, New York, 1987), p. 387 [Google Scholar]
  22. S. Kotz, S. Nadarajah, Multivariate t-distributions and their applications (Cambridge University Press, 2004), p. 272 [Google Scholar]
  23. A. Papoulis, S.U. Pillai, Probability, random variables, and stochastic processes (Tata McGraw-Hill Education, 2002), p. 850 [Google Scholar]
  24. W. Hardie, L. Simar, Applied Multivariate Statistical Analysis (Springer Verlag, Berlin, Heidelberg, 2003), p. 486 [Google Scholar]
  25. R.J. Muirhead, Aspects of Multivariate Statistical Theory (John Wiley & Sons, Canada, 2005), p. 673 [Google Scholar]
  26. N.H. Timm, Applied multivariate analysis, ed. by G. Casella, S. Fienberg, I. Olkin (Springer Verlag, New York, 2002), p. 693 [Google Scholar]
  27. D. Lien, N. Balakrishnan, Moments and properties of multiplicatively constrained bivariate lognormal distribution with applications to futures hedging. J. Stat. Plan. Infer. 136(4), 1349–1359 (2006). doi:10.1016/j.jspi.2004.10.004 [Google Scholar]
  28. S. Engen, R. Lande, T. Walla, P.J. DeVries, Analyzing spatial structure of communities using the two-dimensional Poisson lognormal species abundance model. Am. Nat. 160(1), 60–73 (2002). doi: 10.1086/340612 [Google Scholar]
  29. C. Schoelzel, P. Friederichs, Multivariate nonnormally distributed random variables in climate research – introduction to the copula approach. Nonlin. Processes Geophys. 15(5), 761–772 (2008). doi: 10.5194/npg-15-761-2008 [Google Scholar]
  30. J. Reig, L. Rubio, V.M. Rodrigo-Penarrocha, On the bivariate Nakagami-Lognormal distribution and its correlation properties. Int. J. Antennas Propag. 2014, 1–8 (2014). doi: 10.1155/2014/328732 [Google Scholar]
  31. M.D. Mostafa, M.W. Mahmoud, On the problem of estimation for the bivariate lognormal distribution. Biometrika 51(3/4), 522–527 (1964). doi:10.1093/biomet/51.3-4.522 [Google Scholar]
  32. L. Chen, S. Guo, Copulas and Its Application in Hydrology and Water Resources (Springer, Singapore, 2019), p. 290 [Google Scholar]
  33. P.K. Trivedi, D.M. Zimmer, Copula modeling: An introduction for practitioners. Found. Trends Econ. 1(1), 1–111 (2007) [Google Scholar]
  34. P. Jaworski, F. Durante, W.K. Hardle, T. Rychlik, Copula theory and its applications, vol. 198 (Springer, New York, 2010), p. 330 [Google Scholar]
  35. H. Joe, Dependence modeling with copulas (CRC press, Boca Raton, London, New York, 2014), p. 458 [Google Scholar]
  36. N. Balakrishnan, C.D. Lai, Continuous bivariate distributions, (Springer, New York, 2009), p. 684 [Google Scholar]
  37. R.B. Nelsen, An Introduction to Copulas, 2nd edn. (Springer, New York, 2006), p. 269 [Google Scholar]
  38. M.U. Flores, E. Artero, F. Durante, J.F. Sanchez (eds.), Copulas Dependence Models with Applications. Contributions in Honor of R.B. Nelsen (Springer, 2017), p. 257 [Google Scholar]
  39. M. Fischer, in Dependence Modeling. Vine Copula Handbook, ed. by D. Kurowicka, H. Joe (World Scientific Publishing, Singapore, 2010), pp. 19–36 [Google Scholar]
  40. L. Zaks, Statisticheskoe ocenivanie (Statistical estimation) (Statistika, Moskva, 1976), p. 598 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.