Open Access
Issue
E3S Web Conf.
Volume 280, 2021
Second International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters (ICSF 2021)
Article Number 06003
Number of page(s) 7
Section Sustainable Environment and Environmental Management
DOI https://doi.org/10.1051/e3sconf/202128006003
Published online 30 June 2021
  1. B. Eggins, Chemical and biological sensors (Technosphere, Moscow, 2005) [Google Scholar]
  2. D. Kohl, Function and applications of gas sensors. J. Phys. D: Appl. Phys. 34, R125 (2001). doi:10.1088/0022-3727/34/19/201 [Google Scholar]
  3. N. Docquier, S. Candel, Combustion control and sensors: a review. Prog. Energy Combust. Sci. 28, 107–150 (2002). doi:10.1016/S0360-1285(01)00009-0 [CrossRef] [Google Scholar]
  4. S. Ampuero, J.O. Bosset, The electronic nose applied to dairy products: a review. Sens. Actuators, B: Chem. 94, 1–12 (2003). doi:10.1016/S0925-4005(03)00321-6 [CrossRef] [Google Scholar]
  5. D. Nicolas-Debarnot, F. Poncin-Epaillard, Polyaniline as a new sensitive layer for gas sensors. Anal. Chim. Acta 475, 1–15 (2003). doi:10.1016/S0003-2670(02)01229-1 [Google Scholar]
  6. A.J. Haes, R.P. Van Duyne, A unified view of propagating and localized surface plasmon resonance biosensors. Anal. Bioanal. Chem. 379, 920–930 (2004). doi:10.1007/s00216-004-2708-9 [Google Scholar]
  7. B. Timmer, W. Olthuis, A. van den Berg, Ammonia sensors and their applications - a review. Sens. Actuators, B. Chemical 107, 666–677 (2005). doi:10.1016/j.snb.2004.11.054 [Google Scholar]
  8. J. Riu, A. Maroto, F.X. Rius, Nanosensors in environmental analysis. Talanta 69, 288–301 (2006). doi:10.1016/j.talanta.2005.09.045 [CrossRef] [PubMed] [Google Scholar]
  9. T. Anukunprasert, C. Saiwan, E. Traversa, The development of gas sensor for carbon monoxide monitoring using nanostructure of Nb–TiO2. Sci. Technol. Adv. Mater. 6, 359–363 (2005). doi:10.1016/j.stam.2005.02.020 [Google Scholar]
  10. G. Eranna, B.C. Joshi, D.P. Runthala, R.P. Gupta, Oxide Materials for Development of Integrated Gas Sensors—A Comprehensive Review. Crit. Rev. Solid State Mater. Sci. 29, 111–188 (2004). doi:10.1080/10408430490888977 [Google Scholar]
  11. K. Ho, M.T. Itamura, M. Kelley, R.C. Hughes, Review of Chemical Sensors for In-Situ Monitoring of Volatile Contaminants. (University Libraries UNT Digital Library, 2001), https://digital.library.unt.edu/ark:/67531/metadc722 940. Accessed 26 June 2020 [Google Scholar]
  12. L.P. Oleksenko, N.P., Maksymovych, I.P. Matushko, A.I., Buvailo, N.M. Derkachenko, Hydrogen sensitivity of sensors based on CoxOy/SnO2/Sb2O5 nanomaterials obtained by the sol-gel method. Russ. J. Phys. Chem. A 87(2), 265–269 (2013). doi:10.1134/S0036024413020222 [Google Scholar]
  13. G. Fedorenko, L. Oleksenko, N. Maksymovych, Oxide Nanomaterials Based on SnO2 for Semiconductor Hydrogen Sensors. Adv. Mater. Sci. Eng, 13, 1 (2019). doi:10.1155/2019/5190235 [Google Scholar]
  14. Mine Safety Appliances Company (MSA), Gas detection handbook. 5th ed. (MSA, USA, 2007) [Google Scholar]
  15. M. Zhang, Z. Yuan, J. Song, C. Zheng, Improvement and mechanism for the fast response of a Pt/TiO2 gas sensor. Sens. Actuators B Chem. 148, 87–92 (2010). doi: 10.1016/j.snb.2010.05.001 [Google Scholar]
  16. M. Batzill, U. Diebold, The surface and materials science of tin oxide. Prog. Surf. Sci. 79 (2-4), 47–154 (2005). doi: 10.1016/j.progsurf.2005.09.002 [Google Scholar]
  17. A.V. Marikutsa, M.N. Rumyantseva, A.M. Gaskov and A. M. Samoylov, Nanocrystalline tin dioxide: Basics in relation with gas sensing phenomena. Part I. Physical and chemical properties and sensor signal formation. Inorg. Mat. 51, 1329–1347. (2015). doi: 10.1134/S002016851513004X [Google Scholar]
  18. T.A. Miller, S.D. Bakrania, C. Perez, M.S. Wooldridge, In Functional Nanomaterials, ed. by K.E. Geckeler, E. Rosenberg (American Scientific Publishers, 2006) p. 515 [Google Scholar]
  19. A. Gurlo, Nanosensors: towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies. Nanoscale. 3, 154–165 (2011). doi: 10.1039/C0NR00560F [Google Scholar]
  20. N. Barsan, U. Weimar, Conduction Model of Metal Oxide Gas Sensors. J. Electroceram. 7, 143–167 (2001). doi: 10.1023/A:1014405811371 [Google Scholar]
  21. G.A. Ozin, A.C. Arsenault. Nanochemistry: A Chemical Approach to Nanomaterials (RSC Publishing, London, 2005) p. 876 [Google Scholar]
  22. N. Yamazoe, K. Shimanoe, New perspectives of gas sensor technology. Sens. Actuators. B 138, 100–107 (2009). doi: 10.1016/j.snb.2009.01.023 [Google Scholar]
  23. D. Abbaszadeha, R. Ghasempoura, F. Rahimi, A. Iraji zad, Sens. Transducers J. 73, 819 (2006) [Google Scholar]
  24. L.P. Oleksenko, V.K. Yatsimirsky, G.M. Telbiz, L.V. Lutsenko, Ads. Sci. Technol. 22, 535 (2004) [Google Scholar]
  25. L.P. Oleksenko, L.V. Lutsenko, Catalytic activity of bimetal-containing Co,Pd systems in the oxidation of carbon monoxide. Russ. J. Phys. Chem. A 87, 180–184 (2011). doi: 10.1134/S0036024413020210 [Google Scholar]
  26. G.I. Golodets, Heterogeneous Catalytic Reactions Involving Molecular Oxygen (Elsevier, Amsterdam, 1983) p. 878 [Google Scholar]
  27. C. Hammond, The basics of crystallography and diffraction (Oxford university press, Oxford, 2009) p. 432 [Google Scholar]
  28. C. Xu, J. Tamaki, N. Miura, N. Yamazoe, Stabilization of SnO2 ultrafine particles by additives. J. Mater. Sci. 27, 963–971 (1992). doi: 10.1007/BF01197649 [Google Scholar]
  29. H. Borchert, E.V. Shevchenko, A. Robert et al., Determination of nanocrystal sizes: a comparison of TEM, SAXS, and XRD studies of highly monodisperse CoPt3 particles. Langmuir 21, 1931–1936 (2005). doi: 10.1021/la0477183 [CrossRef] [PubMed] [Google Scholar]
  30. W.P. Kang, C.K. Kim, Performance analysis of a new metal-insulator-semiconductor capacitor incorporated with Pt-SnOx catalytic layers for the detection of O2 and CO gases. J. Appl. Phys. 75, 4237–4242 (1994). doi: 10.1063/1.356012 [Google Scholar]
  31. Q. Yu, K. Wang, C. Luan, Y. Geng, G. Lian, D. Cui, A dual-functional highly responsive gas sensor fabricated from SnO2 porous nanosolid. Sens. Actuators, B 159, 271–276 (2011). doi: 10.1016/j.snb.2011.07.003 [Google Scholar]
  32. X.T. Yin, X.M. Guo, Selectivity and sensitivity of Pd-loaded and Fe-doped SnO2 sensor for CO detection. Sens. Actuators B 200, 213–218 (2014). doi: 10.1016/j.snb.2014.04.026 [Google Scholar]
  33. S. Javanmardi, Sh. Nasresfahani, M.H. Sheikhi, Facile synthesis of PdO/SnO2/CuO nanocomposite with enhanced carbon monoxide gas sensing performance at low operating temperature. Mater. Res. Bull. 118, 110496 (2019). doi: 10.1016/j.materresbull.2019.110496 [Google Scholar]
  34. M. Shojaee, S. Nasresfahani, M.H. Sheikhi, Hydrothermally synthesized Pd-loaded SnO2/partially reduced graphene oxide nanocomposite for effective detection of carbon monoxide at room temperature. Sens. Actuators B 254, 457–467 (2018). doi:10.1016/j.snb.2017.07.083 [Google Scholar]
  35. R. Nadimicherla, H.-Y. Li, K. Tian, X. Guo, SnO2 doped MoO3 nanofibers and their carbon monoxide gas sensing performances. Solid State Ion. 300, 128–134 (2017). doi: 10.1016/j.ssi.2016.12.022 [Google Scholar]
  36. S.K. Lim, S.H. Hong, S.H. Hwang, W.M. Choi, S. Kim, H. Park, M.G Jeong, Synthesis of Al-doped ZnO Nanorods via Microemulsion Method and Their Application as a CO Gas Sensor. J. Mater. Sci. Technol. 31, 639–644 (2015). doi: 10.1016/j.jmst.2014.12.004 [Google Scholar]
  37. B. Rehman, N.K. Bhalla, S. Vihari, S.K. Jain, P. Vashishtha, G. Gupta, SnO2/Au multilayer heterostructure for efficient CO sensing. Mater. Chem. Phys. 244, 122741 (2020). doi: 10.1016/j.matchemphys.2020.122741 [Google Scholar]
  38. S. Vetter, S. Haffer, T. Wagner, M. Tiemann, Nanostructured Co3O4 as a CO gas sensor: Temperature-dependent behavior. Sens. Actuators B 206, 133–138 (2015). doi:10.1016/j.snb.2014.09.025 [Google Scholar]
  39. Sh. Navazani, A. Shokuhfar, M. Hassanisadi, A. Di Carlo, N. Yaghoobi Nia, A. Agresti, A PdPt decorated SnO2-rGO nanohybrid for high-performance resistive sensing of methane. J. Taiwan Inst. Chem. Eng. 95, 438–451 (2019). doi: 10.1016/j.jtice.2018.08.019 [Google Scholar]
  40. P.G. Choi, N. Izu, N. Shirahata, Y. Masuda, Improvement of sensing properties for SnO2 gas sensor by tuning of exposed crystal face. Sens. Actuators, B 296, 126655 (2019). doi: 10.1016/j.snb.2019.126655 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.