Open Access
Issue
E3S Web Conf.
Volume 280, 2021
Second International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters (ICSF 2021)
Article Number 07001
Number of page(s) 7
Section Sustainable Materials and Technologies
DOI https://doi.org/10.1051/e3sconf/202128007001
Published online 30 June 2021
  1. Y. Savchuk, A. Plugin, V. Lyuty, O. Pluhin, O. Borziak, Study of influence of the alkaline component on the physico-mechanical properties of the low clinker and clinkerless waterproof compositions. MATEC Web of Conferences 230, 03018 (2018). doi:10.1051/matecconf/201823003018 [Google Scholar]
  2. T. Markiv, Kh. Sobol, M. Franus, W. Franus, Mechanical and durability properties of concretes incorporating natural zeolite. Archives of Civil and Mechanical Engineering 16, 554–562 (2016). doi:10.1016/j.acme.2016.03.013 [Google Scholar]
  3. P. Kryvenko, H. Cao, O. Petropavlovskyi, L. Weng, O. Kovalchuk, Applicability of alkaliactivated cement for immobilization of lowlevel radioactive waste in ion-exchange resins. EasternEuropean Journal of Enterprise Technologies, 1(6), 40–45 (2016). [Google Scholar]
  4. H. Ivashchyshyn, M. Sanytsky, T. Kropyvnytska, B. Rusyn, Study of low-emission multicomponent cements with a high content of supplementary cementitious materials. Eastern-European Journal of Enterprise Technologies 4 (6-100), 39–47 (2019). doi:10.15587/1729-4061.2019.175472 [Google Scholar]
  5. T. Kropyvnytska, T. Rucinska, H. Ivashchyshyn, R. Kotiv, Development of Eco-Efficient Composite Cements with High Early Strength. Lecture Notes in Civil Engineering, 47, 211–218 (2020). doi:10.1007/978-3-030-27011-7_27 [Google Scholar]
  6. O. Borziak, S. Chepurna, T. Zidkova, A. Zhyhlo, A. Ismagilov, Use of a highly dispersed chalk additive for the production of concrete for transport structures. MATEC Web of Conf. 230, 03003 (2018). doi:10.1051/matecconf/201823003003 [Google Scholar]
  7. E. Pushkarova, V. Gots, O. Gonchar, Stability of hydrosulfoaluminosiljcate compounds and durability of an artificial stone based on them. in: Brittle Matrix Composites 8, BMC, 399–408 (2006). [Google Scholar]
  8. P. Krivenko, O. Petropavlovskyi, O. Kovalchuk, I. Rudenko, O. Konstantynovskyi, Enhancement of alkali-activated slag cement concretes crack resistance for mitigation of steel reinforcement corrosion. E3S Web of Conferences, 166, 06001 (2019). DOI: 10.1051/e3sconf/202016606001 [Google Scholar]
  9. M. B. Santos, J. De Brito, A. S. Silva, A Review on Alkali-Silica Reaction Evolution in Recycled Aggregate Concrete. in: Materials 2020, 13, 2625. doi:10.3390/ma13112625 [Google Scholar]
  10. H. Ye, A. Radlińska, Effect of Alkalis on Cementitious Materials: Understanding the Relationship between Composition, Structure, and Volume Change Mechanism. Journal of Advanced Concrete Technology 15(4), 165–177 (2017). doi:10.3151/jact.15.165 [Google Scholar]
  11. P. Krivenko, V. Gots, O. Petropavlovskyi, I. Rudenko, O. Konstantynovskyi, A. Kovalchuk, Development of solutions concerning regulation of proper deformations in alkali-activated cements. Eastern-European journal of Enterprise Technologies 5 (6-101), 24–32 (2019). doi:10.15587/1729-4061.2019.181150 [Google Scholar]
  12. O. A. Mohamed, A Review of Durability and Strength Characteristics of Alkali-Activated Slag Concrete. Materials 12(8), 1198 (2019). doi:10.3390/ma12081198 [Google Scholar]
  13. P. Krivenko, O. Petropavlovskyi, I. Rudenko, O. Konstantynovskyi, The influence of complex additive on strength and proper deformations of alkali-activated slag cements. Materials Science Forum 968, 13–19 (2019) doi:10.4028/www.scientific.net/MSF.968.13 [Google Scholar]
  14. T. Yang, Z. Zhang, Q. Wang, Q. Wu, ASR potential of nickel slag fine aggregate in blast furnace slag-fly ash geopolymer and Portland cement mortars. Construction and Building Materials 262, 119990 (2020). https://doi.org/10.1016/j.conbuildmat.2020.119990 [Google Scholar]
  15. V. Ducman, M Radeka, Alkali Activated Green Building Materials – Selected Case Study of Alkali Activated Aggregate. Ceramics in Modern Technologies, 1(3) (2018 https://doi.org/10.29272/cmt.2018.0006 [Google Scholar]
  16. A. Leemann, I. Borchers, M. Shakoorioskooie, M. Griffa, C. Müller, P. Lura, Microstructural analysis of ASR in concrete – accelerated testing versus natural exposure, in Proceedings of the International Conference on Sustainable Materials, Systems and Structures (SMSS 2019) Durability, monitoring and repair of structures, 20–22 March 2019 – Rovinj, Croatia. [Google Scholar]
  17. Krivenko P., Petropavlovsky O., Kovalchuk O., HaiLin Cao, Lu Qian Weng, Efficiency of the Alkaliactivated Cement Concretes for Sea Construction. Materials science forum. 968, 3–12 (2019). doi: https://doi.org/10.4028/www.scientific.net/MSF.968 [Google Scholar]
  18. Z. Peng, C. Shi, Z. Shi, B. Lu, S. Wan, Z. Zhang, J. Chang, T. Zhang, Alkali-aggregate reaction in recycled aggregate concrete. Journal of Cleaner Production 255, 120238 (2020). https://doi.org/10.1016/j.jclepro.2020.120238. [Google Scholar]
  19. Md. Nabi Newaz Khan. Prabir Kumar Sarker, Alkali silica reaction of waste glass aggregate in alkali activated fly ash and GGBFS mortars. Materials and Structures, 52, 1–17 (2019). https://doi.org/10.1617/s11527-019-1392-3 [Google Scholar]
  20. P. Awoyera, A. Adesina, A critical review on application of alkali activated slag as a sustainable composite binder. Case Studies in Construction Materials 11, e00268 (2011). doi: 10.1016/j.cscm.2019.e00268 [Google Scholar]
  21. J. L. Provis, Geopolymers and other alkali activated materials: why, how, and what?. Mater Struct. 47, 11–25 (2014). doi: 10.1617/s11527-013-0211-5 [Google Scholar]
  22. Lukáš Kalina, Vlastimil Bílek Jr., Lada Bradová, Libor Topoláˇr Blastfurnace Hybrid Cement withWaste Water Glass Activator: Alkali–Silica Reaction Study. Materials, 13(16), 3646 (2020). doi:10.3390/ma13163646 [Google Scholar]
  23. D. Mahanama, P. De Silva, T. Kim, A. Castel, and M. S. H. Khan, Evaluating Effect of GGBFS in Alkali–Silica Reaction in Geopolymer Mortar with Accelerated Mortar Bar Test. J. Mater. Civ. Eng., 31(8), 04019167 (2019). DOI: 10.1061/(ASCE)MT.1943-5533.0002804. [Google Scholar]
  24. C. Shi, Corrosion resistance of alkali-activated slag cement. Advances in Cement Research 15(2), 77–81 (2003). doi: 10.1680/adcr.2003.15.2.77 [Google Scholar]
  25. Lianfang Sun, Xingji Zhu, Xiaoying Zhuang, Goangseup Zi Chemo-Mechanical Model for the Expansion of Concrete Due to Alkali Silica Reaction. Appl. Sci. 10, 3807 (2020). doi:10.3390/app10113807 [Google Scholar]
  26. P. Krivenko, O. Kovalchuk, Influence of type of alkaline activator on durability of alkali activated concrete using aggregates capable to alkali-silica reaction. Key Engineering materials. 864, 180–188 (2020). DOI: 10.4028/www.Scientific.net/KEM.864.180 [Google Scholar]
  27. O. Kovalchuk, O. Gelevera, V. Ivanychko, Studying the influence of metakaolin on self-healing processes in contact-zone structure of concretes based on the alkali- activated Portland cement. Eastern-European Journal of Enterprise Technologies, No5/6 (101), 33–40 (2019). DOI:10.15587/1729-4061.2019.160959 [Google Scholar]
  28. Wallau, W., Pirskawetz, S., Voland, K., Meng, B. (2018) Continious expansion measurement in accelerated concrete prism testing for verifying ASRexpansion models. Materials and structures. June, 2018. On-line edition. [Google Scholar]
  29. P. Krivenko, O. Petropavlovsky, O. Kovalchuk, O. Gelevera, The influence of interfacial transition zone on strength of alkali activated concrete. Compressive Strength of Concrete (2020). (Book Chapter) DOI:10.5772/intechopen.90929. [Google Scholar]
  30. R. Nicolas, J. Provis, The interfacial transition zone in alkali-activated slag mortars. Frontiers in materials, 2, 70 (2015). [Google Scholar]
  31. D. Angulo-Ramirez, R. Gutierrez, M. Medeiros, Alkali-activated Portland blast furnace slag cement mortars: performance to alkali-aggregate reaction. Construction and building materials, 179, 49–56 (2018). [Google Scholar]
  32. Z. Shi, C. Shi, R. Zhao, S. Wan, Comparison of alkali-silica reaction in alkali-activated slag and Portland cement mortars. Materials and structures, 48(3), 743–751 (2015). [Google Scholar]
  33. J. Van Deventer, R. San Nicolas, I. Ismail, S. Bernal, D. Brice, J. Provis. Microstructure and durability of alkali activated materials as key parameters for standardization. Journal of Sutainable Cement-based materials, 4.2, 116–128 (2015). [Google Scholar]
  34. C. Shi, Z. Shi, R. Zhao, L. Chong, A rewiew on alkali-aggregate reactions in alkali-activated mortars/concretes made with alkali-reactive aggregates. Mater. Struct, 48(3), 621–628 (2015). [Google Scholar]
  35. Joaquín Liaudat, Ignacio Carol, Carlos M. López, Model for alkali-silica reaction expansions in concrete using zero-thickness chemo-mechanical interface elements. International Journal of Solids and Structures 207, 145–177 (2020) https://doi.org/10.1016/j.ijsolstr.2020.09.019 [Google Scholar]
  36. F. Winnefeld, at all. RILEM TC 247-DTA round robin test: sulfate resistance, alkali-silica reaction and freeze–thaw resistance of alkaliactivated concretes, Materials and Structures, 53.6, 1–17 (2020). [Google Scholar]
  37. B. Singh, G. Ishwarya, M. Gupta, S.K. Bhattacharyya, Performance evaluation of geopolymer concrete through alkali-silica reaction. Advances in chemically activated materials, June 1-3, 2014. [Google Scholar]
  38. Q. Wang, C. Zhang, L. Li, Z. Sui. Research on alkali-aggregate reaction of slag based Geopolymer. Construction and Building materials. (2019). On-line edition. [Google Scholar]
  39. J. Shekhovtsova, I. Zhernovsku, M. Kovtun, N. Kozhukhova, I. Zhernovskaya, E. Kearsley, Estimation of fly ash reactivity for use in alkaliactivated cements – A step towards sustainable building material and waste utilization. Journal ofcleaner production, 178, 22–33 (2018). [Google Scholar]
  40. N.M. Khan, P.K. Sarker, Alkali silica reaction of water glass aggregate in alkali activated fly ash and GGBFS mortars. 2019. [Google Scholar]
  41. D. Mahanama, P. De Silva, T. Kim, A. Castel, and M. S. H. Khan, Evaluating Effect of GGBFS in Alkali–Silica Reaction in Geopolymer Mortar with Accelerated Mortar Bar Test. J. Mater. Civ. Eng., 31(8), 04019167 (2019) [Google Scholar]
  42. Ana Mellado, Martha Iris Pérez-Ramos, José Monzó, María Victoria Borrachero, Jordi Payá Resistance to acid attack of alkali-activated binders: Simple new techniques to measure susceptibility. Construction and Building Materials 150, 355–366 (2017). http://dx.doi.org/10.1016/j.conbuildmat.2017.05.224 [Google Scholar]
  43. Patricia Arag´on, Rafael A. Robayo-Salazar, Ruby Mejía de Gutiérrez, Alkali-Activated Concrete Based on Natural Volcanic Pozzolan: Chemical Resistance to Sulfate Attack, J. Mater. Civ. Eng., 32(5), 04020106 (2020). DOI: 10.1061/(ASCE) MT.1943-5533.0003161. [Google Scholar]
  44. P. Czapik, Microstructure and Degradation of Mortar Containing Waste Glass Aggregate as Evaluated by Various Microscopic Techniques Materials, 13, 2186 (2020). doi:10.3390/ma13092186 [Google Scholar]
  45. W. Wang, T. Noguchi, Alkali-silica reaction (ASR) in the alkali-activated cement (AAC) system: A state-of-the-art review. Construction and Building Materials, 252, 119105 (2020). https://doi.org/10.1016/j.conbuildmat.2020.119105. [Google Scholar]
  46. K. Gijbels, P. Krivenko, A. Pasko, O. Kovalchuk, S. Schreurs, Y. Pontikes, W. Schroeyers, The influence of the porosity on radon exhalation and emanation in alkali-activated mortars containing high volume bauxite residue. Construction and Building Materials, 230, 116982 (2020). https://doi.org/10.1016/j.conbuildmat.2019.116982 [Google Scholar]
  47. P. He, B. Zhang, Jian-Xin Lu, Chi Sun Poon, ASR expansion of alkali-activated cement glass aggregate mortars. Construction and Building Materials, 261, (2020) 119925. https://doi.org/10.1016/j.conbuildmat.2020.119925 [Google Scholar]
  48. W. Wang, T. Noguchi, Alkali-silica reaction (ASR) in the alkali-activated cement (AAC) system: A state-of-the-art review. Construction and Building Materials, 252 (2020) 119105. DOI: 10.1016/j.conbuildmat.2020.119105 [Google Scholar]
  49. A. Sabu, L. Karthi, Experimental Study on Hybrid Fibre Reinforced Geopolymer Concrete. Lecture Notes in Civil Engineering, 46, 213–220 (2020). DOI: 10.1007/978-3-030-26365-2_21 [Google Scholar]
  50. J. Deubener, Decoupling between birefringence decay, enthalpy relaxation and viscous flow in calcium boroalumosilicate glasses Chem. Geol. V. 256 № 3-4, 299–305 (2008). [Google Scholar]
  51. R.B. Figueira, R. Sousa, L. Coelho, M. Azenha, J.M. de Almeida, P.A.S. Jorge, C.J.R. Silva, Alcali-silica reaction in concrete: Mechanisms, mitigation and test methods. Construction and Building Materials, 222, 903–931 (2019). https://doi.org/10.1016/j.conbuildmat.2019/07/230 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.