Open Access
E3S Web Conf.
Volume 280, 2021
Second International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters (ICSF 2021)
Article Number 09001
Number of page(s) 10
Section Innovative Approaches for Solving Environmental Issues
Published online 30 June 2021
  1. M. Dowdall, et al., Nordic Nuclear Accident Consequence. Analysis (NORCON): Final Report. NKS-353 (Roskilde, Denmark, 2015). [Google Scholar]
  2. Y. Kyrylenko, I. Kameneva, O. Popov, A. Iatsyshyn, V. Artemchuk, V. Kovach, Source Term Modelling for Event with Liquid Radioactive Materials Spill, in Studies in Systems, Decision and Control, vol. 298, ed. by V. Babak, V. Isaienko, A. Zaporozhets (Springer, Cham, 2020), pp. 261-279. doi:10.1007/978-3-030-48583-2_17 [Google Scholar]
  3. Y. Kyrylenko, et al., Actual Issues on Radiological Assessment for Events with Liquid Radioactive Materials Spills. J. Health Pollut. (2021 in press) [Google Scholar]
  4. R.L. Bangart, et al., Calculation of releases of radioactive materials in gaseous and liquid effluents from boiling water reactors (BWR-GALE Code) (NUREG--0016(Rev1)) (United States, 1978) [Google Scholar]
  5. T. Chandrasekaran, J.Y. Lee, C.A. Willis, NUREG-0016, Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents from Boiling Water Reactors (U.S. Nuclear Regulatory Commission, Washington, 1985) [Google Scholar]
  6. Radioactive Source Term for Normal Operation of Light Water Reactors, ANSI/ANS-18.1-1999 [Google Scholar]
  7. Radioactive Source Term for Normal Operation of Light Water Reactors, ANSI/ANS-18.1-2016 American National Standard (American Nuclear Society, 2016) [Google Scholar]
  8. T. Poos, E. Varju, Determination of evaporation rate at free water surface, in 8th International Symposium on Exploitation of Renewable Energy Sources, pp. 66-71 (2016) [Google Scholar]
  9. B.Ya. Zilberman, D.V. Ryabkov, E.A. Puzikov, E.V. Andreeva, N.E. Mishina, Influence of Pressure (Temperature) on the Nitric Acid Distribution between the Liquid and Vapor in the Course of Evaporation of Nitric Acid Radioactive Waste. Radiochemistry 3(58), 237–242 (2016) [Google Scholar]
  10. M. Orvos, V. Szabo, T. Poos, Rate of Evaporation from the Free Surface of a Heated Liquid, J. Appl. Mech. Tech. Phys. 6(57), 1108–1117 (2016) [Google Scholar]
  11. V. Lukashov, S. Romanko, S. Timofeev, A. Protsenko, Rate of Components Evaporation from Sulfuric Acid Solution During Its Concentrating in Air Flow. Chemistry & Chemical Technology, 3(11), 344–348 (2017) [Google Scholar]
  12. I. Ievdin, D. Trybushnyi, M. Zheleznyak, W. Raskob, An off-site emergency management system for nuclear accidents. Report. (Karlsruhe Institute of Technology, Karlsruhe, 2017) [Google Scholar]
  13. G. Caminada, S. French, K. Politis, et al., Uncertainty in RODOS. Report RODOS(B)-RP(94)-05. (Karlsruhe Institute of Technology, Karlsruhe, 2000) [Google Scholar]
  14. Realtime Online Decision Support System for nuclear emergency management (2015), Accessed 27 Dec 2020 [Google Scholar]
  15. Materials on environmental impact assessment of the proposed activity on the operation of a nuclear facility, a complex of nuclear materials intended for radiochemical reprocessing of spent nuclear fuel (Federal State Unitary Enterprise “Production Association “Mayak”, Ozersk, 2012) [Google Scholar]
  16. A. Nesterenko, Fundamentals of thermodynamic calculations ventilation and air conditioning (Vysshaia Shkola, Moscow, 1971) [Google Scholar]
  17. A. Nesterenko, Experimental study of heat and mass transfer during evaporation of the liquid with a free surface. Material science. Technical Physics 4(24) (1954) [Google Scholar]
  18. V. Isachenko, V. Osipova, A. Sukomel, Heat transfer (Energiya, Moscow, 1975) [Google Scholar]
  19. O. Volkov, Designing of industrial building ventilation (Vyscha Shkola, Kharkov, 1989) [Google Scholar]
  20. S. Rivkin, A. Aleksandrov, Thermodynamic properties of water and steam. Directory (Energiya, Moscow, 1984) [Google Scholar]
  21. ANSYS FLUENT 12.0 User’s Guide. ANSYS, Inc. is certified to ISO 9001:2008 (2009), p. 2070 [Google Scholar]
  22. C. Greenshields, OpenFOAM User Guide version 6. The OpenFOAM Foundation (2018), p. 237. [Google Scholar]
  23. Hawk Ridge Systems, SolidWorks Flow Simulation, Accessed 27 Dec 2020 [Google Scholar]
  24. Sandia National Laboratories, Sandia, Accessed 27 Dec 2020 [Google Scholar]
  25. W. Raskob, C. Landman, D. Trybushnyi, Functions of decision support systems (JRodos as an example): overview and new features and products. Radioprotection 51(HS1), S9-S11 (2016) [EDP Sciences] [Google Scholar]
  26. HotSpot Health Physics Codes Version 3.0 User’s Guide (National Atmospheric Release Advisory Center, LNLL, 2014), p. 198. [Google Scholar]
  27. RASCAL 4.3 User’s Guide (Ramsdell Environmental Consulting, LLC, 2013), p. 125 [Google Scholar]
  28. WinMACCS, a MACCS2 Interface for Calculating Health and Economic Consequences from Accidental Release of Radioactive Materials into the Atmosphere MACCS User’s Guide (U.S. Nuclear Regulatory Commission, 2007), p. 233 [Google Scholar]
  29. I.A. Savushkin, E.I. Ravkova, O.B. Gourko, A.V. Ulanovskij, Construction of a set of typical WWER-1000 severe accident source terms for training applications of RODOS, RODOS internal report, RODOS(WG7)-TN(98)-01 (1998). [Google Scholar]
  30. L. Sági, P. Vértes, P.P. Szabo, L. Koblinger, Construction of a set of typical VVER440 design base accident source terms for training applications of RODOS, RODOS internal report RODOS(WG7)-TN(97)-02 (1997). [Google Scholar]
  31. J.H. Sørensen, et al., Added Value of uncertainty Estimates of Source term and Meteorology (AVESOME) (Nordic Nuclear Safety Research, 2018) [Google Scholar]
  32. International Atomic Energy Agency, Accessed 27 Dec 2020 [Google Scholar]
  33. Council Decision of 14 December 1987 on Community arrangements for the early exchange of information in the event of a radiological emergency, 87/600/Euratom (Euratom, 1987) [Google Scholar]
  34. Operations Manual for Incident and Emergency Communication. EPR-IEComm (IAEA, Vienna, 2019) [Google Scholar]
  35. International Radiological Information Exchange (IRIX) Format. Reference Description IRIX Version 1.0. EPR-IEComm (IAEA, Vienna, 2019) [Google Scholar]
  36. S. Mukhopadhyay, F. Baciu, G. Saluja, J. Segarra, F. Albinet, Application of International Radiological Information Exchange (IRIX) standards for radiation monitoring data reporting, in Proc. SPIE 10763, Radiation Detectors in Medicine, Industry, and National Security XIX, 1076308. doi:10.1117/12.2309380 2018. [Google Scholar]
  37. Y. Balashevska, Y. Kyrylenko, O. Pecherytsia, I. Shevchenko, V. Bogorad, Harmonization of Methodological Approaches and Real Time Radiological Consequence Forecasting Tools. Nucl. Radiat. Saf. 2(86), 20-26 (2020). doi:10.32918/nrs.2020.2(86).03 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.