Open Access
Issue
E3S Web Conf.
Volume 280, 2021
Second International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters (ICSF 2021)
Article Number 09005
Number of page(s) 10
Section Innovative Approaches for Solving Environmental Issues
DOI https://doi.org/10.1051/e3sconf/202128009005
Published online 30 June 2021
  1. S. Li, J. Li, Condition monitoring and diagnosis of power equipment: review and prospective. High Voltage, 2(2), 82-91 (2017). doi:10.1049/hve.2017.0026 [Google Scholar]
  2. L. Ma, Y. Ma, K.Y. Lee, An Intelligent Power Plant Fault Diagnostics for Varying Degree of Severity and Loading Conditions. IEEE Transactions on Energy Conversion, 25(2), 546-554 (2010). doi:10.1109/TEC.2009.2037435. [Google Scholar]
  3. V.P. Babak, S.V. Babak, M.V. Myslovych, A.O. Zaporozhets, V.M. Zvaritch. Principles of Construction of Systems for Diagnosing the Energy Equipment. In: Diagnostic Systems For Energy Equipments. Studies in Systems, Decision and Control, 281, 1-22 Springer, Cham (2020). doi:10.1007/978-3-030-44443-3_1 [Google Scholar]
  4. V.P. Babak, S.V. Babak, M.V. Myslovych, A.O. Zaporozhets, V.M. Zvaritch, Technical Provision of Diagnostic Systems. In: Diagnostic Systems For Energy Equipments. Studies in Systems, Decision and Control, 281, 91-133 Springer, Cham (2020). doi:10.1007/978-3-030-44443-3_4 [Google Scholar]
  5. G. Shavachych, B. Moroz, I. Pobocii, D. Kozenkov, V. Bysygin, Automated Control Parameters Systems of Technological Process Based on Multiprocessor Computing Systems. In: Arai K., Kapoor S. (eds) Advances in Computer Vision. CVC 2019. Advances in Intelligent Systems and Computing, 944, 666-688. Springer, Cham (2020). doi:10.1007/978-3-030- 17798-0_53 [Google Scholar]
  6. I. Korobiichuk, A. Ladanyuk, D. Shumyhai, R. Boyko, V. Reshetiuk, M. Kamiski, How to Increase Efficiency of Automatic Control of Complex Plants by Development and Implementation of Coordination Control System. In: Szewczyk R., Kaliczyńska M. (eds) Recent Advances in Systems, Control and Information Technology. SCIT 2016. Advances in Intelligent Systems and Computing, 543, 189-195. Springer, Cham (2017). doi:10.1007/978-3-319- 48923-0_23 [Google Scholar]
  7. A.O. Zaporozhets, Hardware and Software Implementation of Modules of the System of the Fuel Combustion Control Process. In: Control of Fuel Combustion in Boilers. Studies in Systems, Decision and Control, 287, 61-87. Springer, Cham. doi:10.1007/978-3-030-46299-4_3 [Google Scholar]
  8. L.A. Rusinov, I.V. Rudakova, V.V. Kurkina, Real time diagnostics of technological processes and field equipment. Chemometrics and Intelligent Laboratory Systems, 88(1), 18-25 (2007). doi:10.1016/j.chemolab.2006.11.007 [Google Scholar]
  9. S. Babak, V. Babak, A. Zaporozhets, A. Sverdlova, Method of statistical spline functions for solving problems of data approximation and prediction of objects state. In: CEUR Workshop Proceedings, 2353, 810-821 (2019). Onlive available: http://ceurws.org/Vol-2353/paper64.pdf [Google Scholar]
  10. A. Zaporozhets, Development of Software for Fuel Combustion Control System Based on Frequency Regulator. In: CEUR Workshop Proceedings, 2387, 223-230. Online available: http://ceur-ws.org/Vol-2387/20190223.pdf [Google Scholar]
  11. S.M. Gertsyk, Y.I. Gyzhko, V.M. Zvarich, M.V. Myslovych, L.B. Ospapchuk, R.M. Sysak, Use of autonomous measuring systems for diagnosing of electrical equipment with regard to its operating modes. Tekhnichna elektrodynamika, 5, 116-120 (2018). doi:10.15407/techned2018.05.116 [Google Scholar]
  12. S. Hertshyk, Y. Gyzhko, V. Zvaritch, M. Myslovych, L. Ostapchuk, Features of the Construction of Autonomous Diagnostic Systems of Electrical Equipment, Taking into Account the Modes of Its Operation. In: 2019 IEEE 20th International Conference on Computational Problems of Electrical Engineering (CPEE), Lviv-Slavske, Ukraine, 1-3 (2019). doi:10.1109/CPEE47179.2019.8949148. [Google Scholar]
  13. M.V. Myslovych, R.M. Sysak, L.B. Ostapchuk, Yu.I. Gyzhko, S.M. Hertsyk, Algorithms of operation and software of multilevel system for monitoring and technical diagnostics of electrical power facilities equipment. Tekhnichna elektrodynamika, 4, 86-88 (2016). doi:10.15407/techned2016.04.086 [Google Scholar]
  14. A. Zaporozhets, V. Eremenko, R. Serhiienko, S. Ivanov, Methods and Hardware for Diagnosing Thermal Power Equipment Based on Smart Grid Technology. In: Shakhovska N., Medykovskyy M. (eds) Advances in Intelligent Systems and Computing III. CSIT 2018. Advances in Intelligent Systems and Computing, 871, 476-489. Springer, Cham (2020). doi:10.1007/978-3-030-01069-0_34 [Google Scholar]
  15. A.A. Zaporozhets, V.S. Eremenko, R.V. Serhiienko, S.A. Ivanov, Development of an Intelligent System for Diagnosing the Technical Condition of the Heat Power Equipment. In: 2018 IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT), Lviv, 48-51 (2018). doi:10.1109/STC-CSIT.2018.8526742. [Google Scholar]
  16. A. Zaporozhets, Analysis of Control System of Fuel Combustion in Boilers with Oxygen Sensor. Periodica Polytechnica Mechanical Engineering, 63(4), 241-248 (2019). doi:10.3311/PPme.12572 [Google Scholar]
  17. L. Shkitsa, T. Yatsyshyn, M. Lyakh, O. Sydorenko, Innovative approaches to the formation of environmental safety at the objects of oil and gas production. In: IOP Conf. Ser.: Mater. Sci. Eng, 749, 012009 (2020). doi:10.1088/1757-899X/749/1/012009 [Google Scholar]
  18. L. Shkitsa, T. Yatsyshyn, M. Lyakh, O. Sydorenko, Means of atmospheric air pollution reduction during drilling wells. In: IOP Conf. Ser.: Mater. Sci. Eng. 144, 012009 (2016). doi:10.1088/1757-899X/144/1/012009 [Google Scholar]
  19. L. O. Popov, A. Iatsyshyn, V. Kovach, V. Artemchuk, I. Kameneva, D. Taraduda, V. Sobyna, D. Sokolov, M. Dement, T. Yatsyshyn, Risk assessment for the population of Kyiv, Ukraine as a result of atmospheric air pollution. J. Health Pollut. 10, 200303 (2020). doi:10.5696/2156-9614-10.25.200303 [Google Scholar]
  20. A. Zaporozhets, Analysis of the Air Pollution Monitoring System in Ukraine. In: Babak V., Isaienko V., Zaporozhets A. (eds) Systems, Decision and Control in Energy I. Studies in Systems, Decision and Control, 298, 85-110. Springer, Cham (2020). doi:10.1007/978-3-030-48583-2_6 [Google Scholar]
  21. T. Yatsyshyn, Y. Mykhailiuk, M. Liakh, I. Mykhailiuk, V. Savyk, I. Dobrovolsky, Establishing the dependence of pollutant concentration on operational conditions at facilities of an oil and gas complex. Eastern-European Journal of Enterprise Technologies 2/10(92), 56-63 (2018). doi:10.15587/1729-4061.2018.126624 [Google Scholar]
  22. N. Pobihun, Y. Korobeinykova, O. Pobihun, I. Iuras, Ecological and monitoring studies of oil production territories and possibility of their use in recreation. In: Proceedings of the XIII International Scientific Conference “Monitoring of Geological Processes and Ecological Condition of the Environment”, 2019, 1-5. (2019). doi:10.3997/2214-4609.201903183 [Google Scholar]
  23. A. Paletto, S. Bernardi, E. Pieratti, F. Teston, M. Romangnoli, Assessment of environmental impact of biomass power plants to increase the social acceptance of renewable energy technologies. Heliyon, 5(7), e02700. doi:10.1016/j.heliyon.2019.e02070 [PubMed] [Google Scholar]
  24. Z. Payandeh, K. Kheiralipour, M. Karimi, B. Khoshnevisan, Joint data envelopment analysis and life cycle assessment for environmental impact reduction in broiler production systems. Energy, 127, 768-774 (2017) doi:10.1016/j.energy.2017.03.112 [Google Scholar]
  25. A. Kaab, M. Sharifi, H. Mobli, A. Nabavi-Pelesaraei, K.-w. Chau, Combined life cycle assessment and artificial intelligence for prediction of output energy and environmental impacts of sugarcane production. Science of The Total Environment, 664, 1005-1019 (2019). doi:10.1016/j.scitotenv.2019.02.004 [Google Scholar]
  26. T. Yatsyshyn, L. Shkitsa, O. Popov, M. Liakh, Development of mathematical models of gas leakage and its propagation in atmospheric air at an emergency gas well gushing. Eastern-European Journal of Enterprise Technologies 5/10(101), 49-59 (2019). doi:10.15587/1729-4061.2019.179097 [Google Scholar]
  27. E. Shaburov, A. Fedyukhin, O. Derevianko, Analysis of Energy Efficiency of Municipal Solid Waste Usage for Thermal and Electrical Energy Production. In: IOP Conf. Ser.: Earth Environ. Sci., 272, 022105 (2019). doi:10.1088/1755-1315/272/2/022105 [Google Scholar]
  28. Y. Kyrylenko, I. Kameneva, O. Popov, A. Iatsyshyn, V. Artemchuk, V. Kovach, Source Term Modelling for Event with Liquid Radioactive Materials Spill. In: Babak V., Isaienko V., Zaporozhets A. (eds) Systems, Decision and Control in Energy I. Studies in Systems, Decision and Control, 298, 261-279. Springer, Cham (2020). doi:10.1007/978-3-030-48583-2_17 [Google Scholar]
  29. L. Skitsa, T. Yatsyshyn, M. Liakh, O. Sydorenko, Ways to improve safety of a pumping-circulatory system of a drilling rig. Mining of Mineral Deposits 12(3), 71-79 (2018). doi:10.15407/mining12.03.071 [Google Scholar]
  30. T. Yatsyshyn, N. Glibovytska, L. Skitsa, M. Liakh, S. Kachala, Biotechnogenic System Formed by Long- Term Impact of Oil Extraction Objects. In: Babak V., Isaienko V., Zaporozhets A. (eds) Systems, Decision and Control in Energy I. Studies in Systems, Decision and Control, 298, 165-177. Springer, Cham (2020). doi:10.1007/978-3-030-48583-2_11 [Google Scholar]
  31. O. Savko, I. Melnychuk, I. Hobyr, N. Havadzyn, Evaluation of the environmental taxation effectiveness in the field of oil and gas production. Procedia Environ. Sci. Eng. Manag. 6(4), 607-617 (2019). Online available: http://www.procediaesem.eu/pdf/issues/2019/no4/69_Savko_19.pdf. Accessed 30 Nov 2020 [Google Scholar]
  32. O.M. Mandryk, L.M. Arkhypova, O.V. Pobigun, O.R. Maniuk, Renewable energy sources for sustainable tourism in the Carpathian region. IOP Conf. Ser.: Mater. Sci. Eng. 144, 012007 (2016). doi:10.1088/1757-899X/144/1/012007 [Google Scholar]
  33. O. Mandryk, N. Moskalchuk L. Arkhypova, M. Prykhodk, O. Pobigun, Prospects of environmentally safe use of renewable energy sources in the sustainable tourism development of the Carpathian region of Ukraine. E3S Web Conf. 166, 04005 (2020). doi:10.1051/e3sconf/202016604005 [Google Scholar]
  34. O.M. Mandryk, N.R. Moskalchuk, L.M. Arkhypova, M.M. Pryhodko, O.V. Pobigun, Research quantitative indicators of the potential of solar energy in the Carpathian region of Ukraine. IOP Conf. Ser.: Mater. Sci. Eng. 749, 012033 (2020). doi:10.1088/1757-899X/749/1/012033 [Google Scholar]
  35. A. Zaporozhets, Overview of Quadrocopters for Energy and Ecological Monitoring. In: Babak V., Isaienko V., Zaporozhets A. (eds) Systems, Decision and Control in Energy I. Studies in Systems, Decision and Control, 298, 15-36. Springer, Cham (2020). doi:10.1007/978-3-030-48583-2_2 [Google Scholar]
  36. M.L. Myrontsov, Multi-Probe Hardware for Electrometry of Oil and Gas Wells, Science and innovation 14(3), 51-56 (2018). doi:15407/scine14.03.051 [Google Scholar]
  37. M.L. Myrontsov, The method to solve the inverse problem of lateral logging sounding and lateral logging. In: Proceedings of the XIII International Scientific Conference “Monitoring of Geological Processes and Ecological Condition of the Environment”, 2019, 1-5. (2019). doi:10.3997/2214-4609.201903244 [Google Scholar]
  38. M.L. Myrontsov, Lateral logging sounding and lateral logging complex effective inverse problem solving method. In: Proceedings of the 19th International Conference Geoinformatics – Theoretical and Applied Aspects 2020, 2020, 1-5. (2020). doi:10.3997/2214-4609.2020geo092 [Google Scholar]
  39. M.L. Myrontsov, Electrometry effective inverse problem solving method. In: Proceedings of the 19th International Conference Geoinformatics – Theoretical and Applied Aspects 2020, 2020, 1-5. (2020). doi:10.3997/2214-4609.2020geo090 [Google Scholar]
  40. M.L. Myrontsov, The method to research equivalent solutions zones for inverse problem of well logging electrometry. In: Proceedings of the XIII International Scientific Conference “Monitoring of Geological Processes and Ecological Condition of the Environment”, 2019, 1-5. (2019). doi:10.3997/2214-4609.201903217 [Google Scholar]
  41. M.L. Myrontsov, A new method and program for multiprobe electric logging quantitative interpretation. In: Proceedings of the 11th EAGE International Conference on Geoinformatics - Theoretical and Applied Aspects, 00028 (2012). [Google Scholar]
  42. A.V. Iatsyshyn, V.O. Kovach, V.O. Lyubchak, Y.O. Zuban, A.G. Piven, O.M. Sokolyuk, A.V. Iatsyshyn, O.O. Popov, V.O. Artemchuk, M.P. Shyshkina, Application of augmented reality technologies for education projects preparation. In: CEUR Workshop Proceedings, 2643, 134–160 (2020). Online available: http://ceur-ws.org/Vol-2643/paper07.pdf. [Google Scholar]
  43. A. Iatsyshyn, A. Iatsyshyn, V. Artemchuk, I. Kameneva, V. Kovach, O. Popov, Software tools for tasks of sustainable development of environmental problems: peculiarities of programming and implementation in the specialists’ preparation. E3S Web Conf. 166, 01001 (2020). doi:10.1051/e3sconf/202016601001 [Google Scholar]
  44. A. Іatsyshyn, A. Іatsyshyn, V. Kovach, I. Zinovieva, V. Artemchuk, O. Popov, O. Cholyshkina, O. Radchenko, O. Radchenko, A. Turevych, Application of Open and Specialized Geoinformation Systems for Computer Modelling Studying by Students and PhD Students. In: CEUR Workshop Proceedings 2732, 893-908 (2020). Online available: http://ceurws.org/Vol-2732/20200893.pdf. [Google Scholar]
  45. V. Gurieiev, Yu. Kutsan, A. Іatsyshyn, A. Іatsyshyn, V. Kovach, E. Lysenko, V. Artemchuk, O. Popov, Simulating Systems for Advanced Training and Professional Development of Energy Specialists in Power Sector. In: CEUR Workshop Proceedings 2732, 693-708 (2020). Online available: http://ceurws.org/Vol-2732/20200693.pdf [Google Scholar]
  46. S. Kis, L. Mosora, Y. Mosora, O. Yatsiuk, G. Malynovska, S. Pobihun, Personnel Certification as a Necessary Condition for Enterprise’ Staff Development, Management Systems in Production Engineering, 28(2), 121-126 (2020). doi:10.2478/mspe-2020-0018 [Google Scholar]
  47. S. Hawkins, H. He, G. Williams, R. Baxter, Outlier detection using replicator neural networks. In: Kambayashi Y., Winiwarter W., Arikawa M. (eds) Data Warehousing and Knowledge Discovery. DaWaK 2002. Lecture Notes in Computer Science, 2454, 170-180. Springer, Berlin, Heidelberg (2002). doi:10.1007/3-540-46145-0_17 [Google Scholar]
  48. W. Yan and L. Yu, On Accurate and Reliable Anomaly Detection for Gas Turbine Combustors: A Deep Learning Approach (2019). Online available: https://arxiv.org/ftp/arxiv/papers/1908/1908.09238.pdf. [Google Scholar]
  49. M. Agyemang, K. Barker and R. Alhajj, A comprehensive survey of numeric and symbolic outlier mining techniques. Intelligent Data Analysis, 10(6), 521-538 (2006). doi: 10.3233/IDA-2006-10604 [Google Scholar]
  50. A. Patcha, J.-M. Park, An overview of anomaly detection techniques: Existing solutions and latest technological trends. Computer Networks, 51(12), 3448–3470 (2007). [Google Scholar]
  51. M. Markou, S. Singh, Novelty detection: A reviewpart 1: Statistical approaches. Signal Processing, 83(12), 2481-2497 (2003). doi:10.1016/j.sigpro.2003.07.018 [Google Scholar]
  52. G. Thatte, U. Mitra, J. Heidemann, Parametric methods for anomaly detection in aggregate traffic. IEEE/ACM Transactions on Networking, 19(2), 512-525 (2011). doi: 10.1109/TNET.2010.2070845 [Google Scholar]
  53. A. Kind, M. P. Stoecklin, X. Dimitropoulos, Histogram-based traffic anomaly detection, IEEE Transactions on Network and Service Management, 6(2), 110-121 (2009). doi: 10.1109/TNSM.2009.090604 [Google Scholar]
  54. M. Zhang, B. Xu, J. Gong, An Anomaly Detection Model Based on One-Class SVM to Detect Network Intrusions. In: 2015 11th International Conference on Mobile Ad-hoc and Sensor Networks (MSN), Shenzhen, 102-107 (2015). doi: 10.1109/MSN.2015.40 [Google Scholar]
  55. M. Sharma, K. Das, M. Bilgic, B. Matthews, D. Nielsen, N. Oza, Active Learning with Rationales for Identifying Operationally Significant Anomalies in Aviation. In: Berendt B. et al. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2016. Lecture Notes in Computer Science, 9853. Springer, Cham, 209-225 (2016). doi:10.1007/978-3-319-46131-1_25 [Google Scholar]
  56. S. Omar, A. Ngadi, H.H. Jebur, Machine Learning Techniques for Anomaly Detection: An Overview, International Journal of Computer Applications, 79(2), 33-41 (2013). [Google Scholar]
  57. C. M. Bishop, Neural networks for pattern recognition. Oxford University Press (1995). [Google Scholar]
  58. D. Thierens, The Linkage Tree Genetic Algorithm. In: Schaefer R., Cotta C., Kołodziej J., Rudolph G. (eds) Parallel Problem Solving from Nature, PPSN XI. PPSN 2010. Lecture Notes in Computer Science, 6238, 264-273. Springer, Berlin, Heidelberg (2010). doi:10.1007/978-3-642-15844-5_27 [Google Scholar]
  59. W.-C. Lin, S.-W. Ke, C.-F. Tsai, CANN: An intrusion detection system based on combining cluster centers and nearest neighbors. Knowledge Based Systems, 78, 13-21 (2015). doi:10.1016/j.knosys.2015.01.009 [Google Scholar]
  60. M. Panda, A. Abraham, M.R. Patra, Hybrid intelligent systems for detecting network intrusions. Security Comm. Networks, 8(16), 2741-2749 (2012). doi:10.1002/sec.592 [Google Scholar]
  61. S. Erfani, M. Baktashmotlagh, S. Rajasegarar, S. Karunasekera and C. Leckie, A randomised nonlinear approach to large-scale anomaly detection. Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI-15). The AAAI Press, United States of America, 432-438 (2015) [Google Scholar]
  62. E. Alpaydin, Introduction to Machine Learning. MIT Press (2020) [Google Scholar]
  63. P. J. Werbos, Applications of Advances in Nonlinear Sensitivity Analysis. In: Drenick R.F., Kozin F. (eds) System Modeling and Optimization. Lecture Notes in Control and Information Sciences, 38, 762-770. Springer, Berlin, Heidelberg (1982). doi:10.1007/BFb0006203 [Google Scholar]
  64. D. P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization. International Conference on Learning Representations, San Diego, USA (2015). arXiv:1412.6980 [Google Scholar]
  65. J. Duchi, E. Hazan, Y. Singer, Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. Journal of Machine Learning Research, 12, 2121-2159 (2011). [Google Scholar]
  66. S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber, Gradient Flow in Recurrent Nets: the Difficulty of Learning Long-Term Dependencies. In: J.F. Kolen, S.C. Kremer (eds). A Field Guide to Dynamical Recurrent Networks. Wiley-IEEE Press, 237-243. (2001) [Google Scholar]
  67. J. A. Perez-Ortiz, F. A. Gers, D. Eck, J. Schmidhuber, Kalman filters improve LSTM network performance in problems unsolvable by traditional recurrent nets. Neural Networks, 16(2), 241-250 (2003). doi:10.1016/S0893-6080(02)00219-8 [Google Scholar]
  68. F. Gers, J. Schmidhuber, F. Cummins, Learning to forget: continual prediction with LSTM. In: 9th International Conference on Artificial Neural Networks: ICANN ’99, 850-855 (1999). doi:10.1049/cp:19991218 [Google Scholar]
  69. A. Graves, A-r. Mohamed and G. Hinton, Speech recognition with deep recurrent neural networks. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, 6645-6649 (2013). doi:10.1109/ICASSP.2013.6638947. [Google Scholar]
  70. G. V. Houdt, C. Mosquera, G. Nápoles, A review on the long short-term memory model. Artificial Intelligence Review, 53, 5929-5955 (2020). doi:10.1007/s10462-020-09838-1 [Google Scholar]
  71. R. Metzler, W. Kinzel, L. Ein-Dor, I. Kanter, Generation of unpredictable time series by a neural network. Physical Review E, 63(5), 056126 (2001). doi:10.1103/PhysRevE.63.056126 [Google Scholar]
  72. K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural Networks, 4(2), 251-257 (1990). doi:10.1016/0893-6080(91)90009-T [Google Scholar]
  73. J. Heaton, The Number of Hidden Layers. Heaton Research (2017). Online available: https://www.heatonresearch.com/2017/06/01/hiddenlayers.html. [Google Scholar]
  74. K. G. Sheela, S. N. Deepa, Review on Methods to Fix Number of Hidden Neurons in Neural Networks. Mathematical Problems in Engineering, 2013, 425740 (2013). doi:10.1155/2013/425740 [Google Scholar]
  75. J.-Y. Li, T. W. S. Chow, Y.-L. Yu, Estimation theory and optimization algorithm for the number of hidden units in the higher-order feedforward neural network. Proceedings of ICNN’95 - International Conference on Neural Networks, Perth, WA, Australia, 3, 1229-1233 (1995). doi:10.1109/ICNN.1995.487330. [Google Scholar]
  76. S. Tamura, M. Tateishi, Capabilities of a four-layered feedforward neural network: four layers versus three. IEEE Transactions on Neural Networks, 8(2), 251-255 (1997). doi:10.1109/72.557662 [Google Scholar]
  77. O. Fujita, Statistical estimation of the number of hidden units for feedforward neural networks. Neural Networks, 11(5), 851-859 (1998). doi:10.1016/S0893-6080(98)00043-4 [Google Scholar]
  78. Z. Zhang, X. Ma, Y. Yang, Bounds on the number of hidden neurons in three-layer binary neural networks. Neural Networks, 16(7), 995-1002 (2003). doi:10.1016/S0893-6080(03)00006-6 [Google Scholar]
  79. J. Ke, X. Liu, Empirical Analysis of Optimal Hidden Neurons in Neural Network Modeling for Stock Prediction. In: 2008 IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application, Wuhan, 828-832. (2008). doi:10.1109/PACIIA.2008.363. [Google Scholar]
  80. S. Xu, L. Chen, A novel approach for determining the optimal number of hidden layer neurons for FNN’s and its application in data miningю In: 5th International Conference on Information Technology and Applications (ICITA 2008), 23-26 June 2008, Cairns, Queensland, Australia, 683-686 (2008). Online available: https://eprints.utas.edu.au/6995/ [Google Scholar]
  81. K. Shibata, Y. Ikeda, Effect of number of hidden neurons on learning in large-scale layered neural networks. In: 2009 ICCAS-SICE, Fukuoka, 5008-5013 (2009). [Google Scholar]
  82. D. Hunter, H. Yu, M. S. Pukish III, J. Kolbusz, B. M. Wilamowski, Selection of Proper Neural Network Sizes and Architectures—A Comparative Study. IEEE Transactions on Industrial Informatics, 8(2), 228-240, (2012). doi:10.1109/TII.2012.2187914 [Google Scholar]
  83. Predictive Equipment Failures. Data. Online available: https://www.kaggle.com/c/equipfailstest/data [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.