Open Access
Issue
E3S Web Conf.
Volume 282, 2021
International Conference “Ensuring Food Security in the Context of the COVID-19 Pandemic” (EFSC2021)
Article Number 07003
Number of page(s) 15
Section Creation of a High-Performance Sector in Agriculture, Developing on the Basis of Modern Technologies
DOI https://doi.org/10.1051/e3sconf/202128207003
Published online 05 July 2021
  1. Y. Yu, P. Wang, Ch. Wang, X. Wang, B. Hu, Int. J. Environ Res Public Health, 15(10), 2118 (2018) doi: 10.3390/ijerph15102118 [Google Scholar]
  2. M. Liro, V. Ruiz-Villanueva, P. Mikuś, B. Wyżga, E. Bladé Castellet, Sci Total Environ. 744, 140555 (2020) doi: 10.1016/j.scitotenv.2020.140555 [CrossRef] [PubMed] [Google Scholar]
  3. M. Varol, Environ Res., 187, 109664 (2020) doi: 10.1016/j.envres.2020.109664 [CrossRef] [PubMed] [Google Scholar]
  4. G. Spriņġe, M. Bērtiņš, L. Gnatyshyna, I. Kokorīte, A. Lasmane, V. Rodinov, O. Stoliar, Ambio, Online ahead of print (2021) doi: 10.1007/s13280-020-01470-1. [Google Scholar]
  5. M. Liro, Sci Total Environ., 651(2), 2899–2912 (2019) doi: 10.1016/j.scitotenv.2018.10.138 [CrossRef] [PubMed] [Google Scholar]
  6. X. Zhu, M. Zhang, X. Dong Qu, W. Qi Peng, L. Fei Duan, Ying Yong Sheng Tai Xue Bao, 29(11), 3847–3856 (2018) doi: 10.13287/j.1001-9332.201811.036 [PubMed] [Google Scholar]
  7. T. Jiang, W.W. Lin, Y.J. Cao, K. Li, Y.X. Xuan, R. Li, J.Y. Chen, Huan Jing Ke Xue, 41(12), 5410–5418 (2020) doi: 10.13227/j.hjkx.202003018 [PubMed] [Google Scholar]
  8. P.M. Gurgel, J.A. Navoni, D.M. Ferreira, V.S. Amaral, Sci Total Environ., 572, 324–332 (2016) doi: 10.1016/j.scitotenv.2016.08.002 [CrossRef] [PubMed] [Google Scholar]
  9. M.S. Bhuyan, M.А. Bakar, Environ Sci Pollut. Res Int. 24(35), 27587–27600 (2017) doi: 10.1007/s11356-017-0204-y [Google Scholar]
  10. Y. Cao, K. Lei, X. Zhang, L. Xu, Ch. Lin, Y. Yang, Ecotoxicol Environ Saf. 164, 210–218 (2018) doi: 10.1016/j.ecoenv.2018.08.009 [CrossRef] [PubMed] [Google Scholar]
  11. R.P. Gomes, J.A.P. Silva, M.C.C. Junior, W.C.A. Alburquerque, P.S. Scalize, A.R.G. Filho, D. de J. Pires, J.D.G. Vieira, L.C. Carneiro, Environ Geochem Health. 41(6), 2425–2442 (2019) doi: 10.1007/s10653-019-00292-9 [CrossRef] [PubMed] [Google Scholar]
  12. Y.Y. Rindita, R.K. Cahyani, Journal of Natural Remedies 21, 10(2), 1–9 (2021) [Google Scholar]
  13. R.I. Bastanov, M.A. Derkho, K.A. Korlyakov, D.Yu. Nokhrin Astrakhan Bulletin of Ecological Education 3 (45), 163–168 (2018) [Google Scholar]
  14. L.G. Muhamedyarova, M.A. Derkho, G.V. Meshcheriakova, O.A. Gumenyuk, S.S. Shakirova, Agronomy Research 18(2), 483–493 (2020) [Google Scholar]
  15. M. Derkho, L. Mukhamedyarova, G. Rubjanova, P. Burkov, T. Schnyakina, P. Shcherbakov, T. Shcherbakova, K. Stepanova, G. Kazhibayeva, Inter. Journal of Veterinary Science 8(2), 61–66 (2019) [Google Scholar]
  16. S.S. Withanachchi, G. Ghambashidze, I. Kunchulia, T. Urushadze, A. Ploeger, Int J Environ Res Public Health 15(4), 621(2018) doi: 10.3390/ijerph15040621 [Google Scholar]
  17. D.Yu. Nokhrin, Ecological and veterinary-sanitary state of reservoirs of Chelyabinsk region: monograph, 226 (2020) [Google Scholar]
  18. GOST 51592—2000, Water, General requirements for sampling, 5 (2000) [Google Scholar]
  19. PND F 14.1:2:3:4.121-97 Quantitative chemical analysis of water. Methods of measuring pH of water samples by potentiometric method, 13 (2018) [Google Scholar]
  20. PND F 14. 1:2 .101-97 Quantitative chemical analysis of water. Method of measuring mass concentration of dissolved oxygen in samples of natural and treated wastewater by iodometric method. Access mode: https://files.stroyinf.ru/Data2/1/4293846/4293846286.htm (access date 20.02.2021) [Google Scholar]
  21. NDP 10.1:2:3.131-2016. Determination methods of biochemical oxygen demand after 5 days of incubation (BOD5) in samples of drinking, natural and wastewater by amperometric method, 23 (2016) [Google Scholar]
  22. GOST 31957 — 2012 Determination methods of alkalinity and mass concentration of carbonates and bicarbonates, 25 (2013) [Google Scholar]
  23. PND F 14.1:2:3.96-97. Quantitative chemical analysis of water. Methods of measuring mass concentration of chlorides in samples of natural and treated wastewater by argentometric method, 20 (2016) [Google Scholar]
  24. PND F 14.1:2.159-2000. Quantitative chemical analysis of water. Measurement methods of sulphate-ions mass concentration in samples of natural and wastewater by turbidimetric method [http://docs.cntd.ru/document/1200075508 (access date: 15.12.2021) [Google Scholar]
  25. PND F 14.1:2:3:4.179-2002. Quantitative chemical analysis of water. Measurement methods of fluoride ions mass concentration in drinking, surface, underground fresh and wastewater by photometric method with lanthanum (cerium) alizarine complexone, 23 (2012 [Google Scholar]
  26. GOST 31869-2012. Water. Methods for determining the content of cations (ammonium, barium, potassium, calcium, lithium, magnesium, sodium, strontium) using capillary electrophoresis, 23 (2019) [Google Scholar]
  27. GOST 18165-2014 Water. Methods for determining aluminum content, 25 (2019) [Google Scholar]
  28. PND F 14.1:2:4.50-96. Quantitative chemical analysis of water. Methods of measuring mass concentration of total iron in drinking, surface, and wastewater by photometric method with sulfosalicylic acid, 20 (2011) [Google Scholar]
  29. PND F 14.1:2:4.139-98. Quantitative chemical analysis of water. Methods of measuring mass concentrations of iron, cobalt, manganese, copper, nickel, silver, chromium, and zinc in samples of drinking, surface and wastewater by atomic absorption spectrometry method, files.stroyint.ru/Index2/1/493832/429832535/htm (access date: 15.12.2021) [Google Scholar]
  30. GN 2.1.5.1315-03 Maximum permissible concentrations (MPC) of chemicals in water bodies of drinking and cultural-domestic water use http://docs.cntd.ru/document/901862249 (access date: 20.02.2021) [Google Scholar]
  31. G. Bakan, H.B. Özkoç, S. Tülek, H. Cüce, Turk. J. Fish. Aquat. Sci., 10, 453–462 (2010) doi: 10.4194/trjfas.2010.0403 [Google Scholar]
  32. E.V. Pimenova, T.Yu. Nasrutdinova, S.V. Likhachev, Hygienic and ecological normalization of environmental quality, 151 (2017) [Google Scholar]
  33. O.V. Gagarina, Evaluation and rationing of the natural waters' quality: criteria, methods, existing problems, 199 (2012) [Google Scholar]
  34. I.T. Joliffe, Principal component analysis. N.Y, Springer-Verlag, 488 (2002) doi:10.1007/b98835 [Google Scholar]
  35. D.A. Jackson, Ecology, 74(8), 2204–2214 (1993) [CrossRef] [Google Scholar]
  36. J. Oksanen, F.G. Blanchet, M. Friendly, R. Kindt, P. Legendre et al. Package ‘vegan’. Community Ecology Package Version 2.5-7 (2020) URL: https://github.com/vegandevs/vegan (access date: 01.05.2021) [Google Scholar]
  37. R Core Team. R: A language and environment for statistical computing. Austria, Vienna: R Foundation for Statistical Computing, URL: https://www.R-project.org (access date: 02.05.2021) (2016) [Google Scholar]
  38. D.Yu. Nokhrin, Yu.G. Gribovsky, N.A. Davydova Ecology, 4, 369–375 (2011) [Google Scholar]
  39. R.I. Bastanov, M.A. Derkho Scholars notes of the Crimean Federal University named after V.I. Vernadsky, Biology. Chemistry 4 (70), 1, 5–14 (2018) [Google Scholar]
  40. L. Xiao, Q. Zhang, C. Niu, H. Wang, J Environ Res Public Health, 17(14), 5015 (2020) doi: 10.3390/ijerph17145015 [Google Scholar]
  41. I. Zykova, N. Maksimuk, M. Rebezov, E. Kuznetsova, M. Derkho, T. Sereda, G. Kazhibayeva, Y. Somova, T. Zaitseva, ARPN Journal of Engineering and Applied Sciences, 14(11), 2139–2145 (2019) [Google Scholar]
  42. K.Th. Nguyen, H.M. Nguyen, C.K. Truong, M.B. Ahmed, Y. Huang, J.L. Zhou, Environ Geochem Health, 41(6), 2559–2575 (2019) doi: 10.1007/s10653-019-00302-w [CrossRef] [PubMed] [Google Scholar]
  43. V.M. Artemenko, Yu.P. Ilyin, V.S. Kucherenko, A.I. Ryabinin, S.A. Bobrova, A.N. Gutsalyuk, Yu.A. Malchenko, L.V. Saltykova Environmental safety of coastal and shelf zones and integrated use of shelf resources, 12, 129–148 (2005) [Google Scholar]
  44. A. Baran, M. Tarnawski, T. Koniarz, Environ. Sci. Pollut. Res., 23, 17255–17268 (2016) doi: 10.1007/s11356-016-6678-1 [Google Scholar]
  45. M.G. Opekunova, A.Yu. Opekunov, V.V. Somov, E.S. Mitrofanova, E.E. Papyan, Proceedings of the Biogeochemical Laboratory, 25, 524–536 (2016) [Google Scholar]
  46. F. Ferati, M. Kerolli-Mustafa, A. Kraja-Ylli, Environ Monit Assess., 187(6), 338 (2015) doi: 10.1007/s10661-015-4524-4 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.