Open Access
E3S Web Conf.
Volume 287, 2021
International Conference on Process Engineering and Advanced Materials 2020 (ICPEAM2020)
Article Number 04007
Number of page(s) 5
Section Sustainable Process Development
Published online 06 July 2021
  1. Kurnia, J.C., Jangam, S.V., Akhtar, S., Sasmito, A.P., Mujumdar, A.S. Advances in biofuel production from oil palm and palm oil processing waste: A review. Biofuel Res. J. 9, 332–346 (2016). [Google Scholar]
  2. Asadieraghi, M., Daud, W.M.A.W., Characterization of lignocellulosic biomass thermal degradation and physiochemical structure: Effects of demineralization by diverse acid solutions. Energy Convers. Manag. 82, 71–82 (2014). [Google Scholar]
  3. Doherty, W.O.S., Mousavioun, P., Fellows, C.M. Value-adding to cellulosic ethanol: Lignin polymers. Ind. Crops Prod. 33, 259–276 (2011). [Google Scholar]
  4. Aro, T., Fatehi, P. Production and application of lignosulfonates and sulfonated lignin. Chem. Sus. Chem., 10, 1861–1877 (2017). [Google Scholar]
  5. Ragauskas, A.J., Beckham, G.T., Biddy, M.J., Chandra, R., Chen, F., Davis, M.F., Davison, B.H., Dixon, R.A., Gilna, P., Keller, M., Langan, P., Naskar, A.K., Saddler, J.N., Tschaplinski, T.J., Tuskan, G.A., Wyman, C.E. Lignin valorization: Improving lignin processing in the bio refinery. Science, 344, 1246843 (2014). [PubMed] [Google Scholar]
  6. Thakur, S., Govender, P.P., Mamo, M.A., Tamulevicius, S., Mishra, Y.K., Thakur, V.K. Progress in lignin hydrogels and nanocomposites for water purification: Future perspectives. Vacuum, 146, 342–355 (2017). [Google Scholar]
  7. Schwierz, F. Graphene transistors. Nature Nanotechnol, 5, 487–496 (2010). [Google Scholar]
  8. Watcharotone, S., Dikin, D.A., Stankovich, S., Piner, R., Jung, I., Dommett, G.H.B., Evmenenko, G., Wu, S.-E., Chen, S.-F., Liu, C.-P.; Son-Binh T., Nguyen, S.T.; Ruoff, R.S. Graphene-silica composite thin films as transparent conductors. Nano Lett, 7, 18881892 (2007). [Google Scholar]
  9. Wang, H., Cui, L.-F., Yang, Y., Casalongue, H.S., Robinson, J.T., Liang, Y., Cui, Y., Dai, H., MmOzi-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc., 132, 13978–13980 (2010). [CrossRef] [PubMed] [Google Scholar]
  10. Liang, Y., Li, Y., Wang, H., Zhou, J., Wang, J., Regier, T., Dai, H. CosO4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nature Mater., 10, 780–786 (2011). [Google Scholar]
  11. Wu, L., Chu, H.S., Koh, W.S., Li, E.P. Highly sensitive graphene biosensors based on surface plasmon resonance. Opt. Express, 18, 14395–14400 (2010). [CrossRef] [PubMed] [Google Scholar]
  12. Choi, W., Lahiri, I., Seelaboyina, R., Kang, Y.S. Synthesis of graphene and its applications: A review. Crit. Rev. Solid State Mater. Sci., 35, 52–71 (2010). [CrossRef] [Google Scholar]
  13. Gosselink, R.J.A., de Jong, E., Guran, B., Abacherli, A. Co-ordination network for ligninstandardisation, production and applications adapted to market requirements (EUROLIGNIN). Ind. Crops Prod. 20, 121–129 (2004). [Google Scholar]
  14. Loh, S.K. The potential of the Malaysian oil palm biomass as a renewable energy source. Energy Conv. Manag., 141, 285–298 (2016). [Google Scholar]
  15. Abdelaziz, O.Y., Brink, D.P., Prothmann J., Ravi K., Sun M., García-Hidalgo, J., Sandahl, M., Hulteberg, C.P., Turner, C., Lidén, G., Gorwa-Grauslund, M.F. Biological valorization of low molecular weight lignin, Biotechnol. Adv., 34, 1318–1346 (2016). [CrossRef] [Google Scholar]
  16. Liu, W.-J., Jiang H., Yu, H.-Q. Thermochemical conversion of lignin to functional materials: a review and future directions. Green Chem., 17, 4888–4907 (2015). [Google Scholar]
  17. Li, J., Yan, Q., Zhang, X., Zhang, J., Cai, Z. Efficient Conversion of lignin waste to high value bio-graphene oxide nanomaterials. Polymers, 11, 623 (2019). [Google Scholar]
  18. Allen, M.J., Tung, V.C., Kaner, R.B. Honeycomb carbon: A review of graphene. Chem. Rev, 110, 132–145 (2009) [Google Scholar]
  19. Kumar, A.; Anushree, Kumar, J.; Bhaskar, T. Utilization of lignin: A sustainable and eco-friendly approach, J. Energy Inst., 93, 235–271 (2020). [Google Scholar]
  20. Mehravar, S., Fatemi, S., Komiyama, M. The role of cerium intercalation in the efficient dry exfoliation of graphene layers at a low temperature. DiamondRelat. Mater., 101, 107615 (2020). [Google Scholar]
  21. Chervin, C.N., Clapsaddle, B.J., Chiu, H.W., Gash, A.E., Satcher, J.H., Kauzlarich, S.M. A Non-alkoxide sol-gel method for the preparation of homogeneous nanocrystalline powders of La085Sr015MnO3. Chem. Mater., 18, 7, 1928–1937 (2006). [Google Scholar]
  22. Wu, J.-B.; Lin, M.-L.; Cong, X.; Liu, H.-N.; Tan, P.-H., Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev., 47, 1822–1873 (2018). [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.