Open Access
Issue |
E3S Web Conf.
Volume 287, 2021
International Conference on Process Engineering and Advanced Materials 2020 (ICPEAM2020)
|
|
---|---|---|
Article Number | 04006 | |
Number of page(s) | 7 | |
Section | Sustainable Process Development | |
DOI | https://doi.org/10.1051/e3sconf/202128704006 | |
Published online | 06 July 2021 |
- A. Nair, A. A. Juwarkar, and S. Devotta, Study of speciation of metals in an industrial sludge and evaluation of metal chelators for their removal, J. Hazard. Mater., 152, 545–553 (2008) [CrossRef] [PubMed] [Google Scholar]
- A. R. Abdullah, Environmental pollution in Malaysia: trends and prospects, Trends Anal. Chem., 14, 191–198 (1995) [Google Scholar]
- M. N. R. Rosli, S. B. Samat, M. S. Yasir, and M. F. M. Yusof, Analysis of Heavy Metal Accumulation in Fish at Terengganu Coastal Area, Malaysia, Sains Malays., 47, 1277–1283 (2018) [Google Scholar]
- M. M. Authman, Use of Fish as Bio-indicator of the Effects of Heavy Metals Pollution, J. Aquac. Res. Dev., 06, 04 (2015). [Google Scholar]
- N. T. Abdel-Ghani, G. A. El-Chaghaby, and F. S. Helal, Simultaneous removal of aluminum, iron, copper, zinc, and lead from aqueous solution using raw and chemically treated African beech wood sawdust, Desalination Water Treat., 51, 3558–3575 (2013) [Google Scholar]
- G. Yuvaraja, N. Krishnaiah, M. V. Subbaiah, and A. Krishnaiah, Biosorption of Pb(II) from aqueous solution by Solanum melongena leaf powder as a low-cost biosorbent prepared from agricultural waste, Colloids Surf. B Biointerfaces, 114, 75–81 (2014) [CrossRef] [PubMed] [Google Scholar]
- D. Sud, G. Mahajan, and M. P. Kaur, Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions - A review, Bioresour. Technol., 99, 6017–6027 (2008) [CrossRef] [PubMed] [Google Scholar]
- W. T. Tan, Copper(II) Adsorption by Waste Tea Leaves and Coffee Powder, 8, 8 (1985). [Google Scholar]
- A. Kamari, S. N. M. Yusoff, F. Abdullah, and W. P. Putra, Biosorptive removal of Cu(II), Ni(II) and Pb(II) ions from aqueous solutions using coconut dregs residue: Adsorption and characterisation studies, J. Environ. Chem. Eng., 2, 1912–1919 (2014) [Google Scholar]
- G. F. Coelho et al., Removal of Cd(II), Pb(II) and Cr(III) from water using modified residues of Anacardium occidentale L., Appl. Water Sci., 8 (2018) [CrossRef] [PubMed] [Google Scholar]
- M. A. Al-Ghouti, J. Li, Y. Salamh, N. Al-Laqtah, G. Walker, and M. N. M. Ahmad, Adsorption mechanisms of removing heavy metals and dyes from aqueous solution using date pits solid adsorbent, J. Hazard. Mater., 176, 510–520 (2010) [CrossRef] [PubMed] [Google Scholar]
- K. S. Bharathi and S. T. Ramesh, Removal of dyes using agricultural waste as low-cost adsorbents: a review, Appl. WaterSci., 3, 773–790 (2013) [Google Scholar]
- Y. Shuhong et al., Biosorption of Cu2+, Pb2+ and Cr6+ by a novel exopolysaccharide from Arthrobacter ps-5, Carbohydr. Polym., 101, 50–56 (2014) [CrossRef] [PubMed] [Google Scholar]
- H. Demir, A. Top, D. Balköse, and S. Ülkü, Dye adsorption behavior of Luffa cylindrica fibers, J. Hazard. Mater., 153, 389–394 (2008) [CrossRef] [PubMed] [Google Scholar]
- T. S. Krishnan and U. M. F. E. dan Pentadbiran, Forecasting Tea Production in Malaysia. Fakulti Ekonomi dan Pentadbiran, Universiti Malaya (2000) [Google Scholar]
- A. G. Paulino, A. J. da Cunha, R. V. da Silva Alfaya, and A. A. da Silva Alfaya, Chemically modified natural cotton fiber: a low-cost biosorbent for the removal of the Cu(II), Zn(II), Cd(II), and Pb(II) from natural water, Desalination Water Treat., 52, 4223–4233 (2014) [Google Scholar]
- P. M. Shukla and S. R. Shukla, Biosorption of Cu(II), Pb(II), Ni(II), and Fe(II) on Alkali Treated Coir Fibers, Sep. Sci. Technol., 48, 421–428 (2013) [Google Scholar]
- V. K. Gupta, S. Agarwal, P. Singh, and D. Pathania, Acrylic acid grafted cellulosic Luffa cylindrical fiber for the removal of dye and metal ions, Carbohydr. Polym., 98, 1214–1221 (2013) [CrossRef] [PubMed] [Google Scholar]
- C. Liu, H. H. Ngo, W. Guo, and K.-L. Tung, Optimal conditions for preparation of banana peels, sugarcane bagasse and watermelon rind in removing copper from water, Bioresour. Technol., 119, 349–354 (2012) [CrossRef] [PubMed] [Google Scholar]
- M. A. Martin-Lara, I. L. R. Rico, I. C. A. Vicente, G. B. Garcia, and M. C. de Hoces, Modification of the sorptive characteristics of sugarcane bagasse for removing lead from aqueous solutions, Desalination, 256, 58–63 (2010) [Google Scholar]
- W. Pranata Putra et al., Biosorption of Cu(II), Pb(II) and Zn(II) Ions from Aqueous Solutions Using Selected Waste Materials: Adsorption and Characterisation Studies, J. Encapsulation Adsorpt. Sci., 04, 25–35 (2014) [Google Scholar]
- S. R. Shukla and R. S. Pai, Adsorption of Cu(II), Ni(II) and Zn(II) on modified jute fibres, Bioresour. Technol., 96, 1430–1438 (2005) [CrossRef] [PubMed] [Google Scholar]
- Biology Department, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tg. Malim, Perak, Malaysia, R. Shamsudin, H. Abdullah, and A. Kamari, Application of Kenaf Bast Fiber to Adsorb Cu(II), Pb(II) and Zn(II) in Aqueous Solution: Single- and Multi-metal Systems, Int. J. Environ. Sci. Dev., 7, 715–723 (2016) [Google Scholar]
- K. L. Wasewar, M. Atif, B. Prasad, and I. M. Mishra, Adsorption of Zinc using Tea Factory Waste: Kinetics, Equilibrium and Thermodynamics, CLEAN - Soil Air Water, 36, 320–329 (2008) [Google Scholar]
- B. M. W. P. K. Amarasinghe and R. A. Williams, Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater, Chem. Eng. J., 132, 299–309 (2007) [Google Scholar]
- Indah Water Portal (2019). https://www.iwk.com.my/do-you-know/effluent-standards. (2020) [Google Scholar]
- M. H. Jnr and A. I. Spiff, Equilibrium sorption study of Al3+, Co2+ and Ag+ in aqueous solutions by fluted pumpkin (Telfairia occidentalis HOOK f) waste biomass, Acta Chim Slov, 52, 174–181 (2005) [Google Scholar]
- W. B. Jensen, The Place of Zinc, Cadmium, and Mercury in the Periodic Table, J. Chem. Educ., 80, 952 (2003). [Google Scholar]
- M. Nadeem, M. Shabbir, M. A. Abdullah, S. S. Shah, and G. McKay, Sorption of cadmium from aqueous solution by surfactant-modified carbon adsorbents, Chem. Eng. J., 148, 365–370 (2009) [Google Scholar]
- Khan Academy, Acids, bases, pH, and buffers. https://www.khanacademy.org/science/biology/water-acids-and-bases/acids-bases-and-ph/a/acids-bases-ph-and-bufffers. (2020) [Google Scholar]
- H. S. Fogler, Essentials of Chemical Reaction Engineering: Essenti Chemica Reactio Engi. Pearson Education (2010) [Google Scholar]
- C. Sing and J. Yu, Copper adsorption and removal from water by living mycelium of white-rot fungus Phanerochaete chrysosporium, Water Res., 32, 27462752 (1998). [Google Scholar]
- A. A. Mengistie, T. S. Rao, A. V. P. Rao, and M. Singanan, Removal of lead (II) ions from aqueous solutions using activated carbon from Militia ferruginea plant leaves, Bull. Chem. Soc. Ethiop., 22 (2008) [Google Scholar]
- P. Hadi, J. Barford, and G. McKay, Synergistic effect in the simultaneous removal of binary cobalt-nickel heavy metals from effluents by a novel e-waste-derived material, Chem. Eng. J., 228, 140–146 (2013) [Google Scholar]
- P. R. Puranik, N. S. Chabukswar, and K. M. Paknikar, Cadmium biosorption by Streptomyces pimprina waste biomass, Appl. Microbiol. Biotechnol., 43, 1118–1121 (1995) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.