Open Access
Issue
E3S Web Conf.
Volume 288, 2021
International Symposium “Sustainable Energy and Power Engineering 2021” (SUSE-2021)
Article Number 01001
Number of page(s) 7
DOI https://doi.org/10.1051/e3sconf/202128801001
Published online 14 July 2021
  1. Rudnytska G. Analysis of promising methods for protection of fruit trees generative organs from spring frosts. Technology audit and production reserves. 2015. V. 3. N° 1(23), Pages 64–69. [Google Scholar]
  2. Vincent W.J., Heusinkvelda J., Antoon van Hooftb, Bart Schilperoortc, Peter Baasde, Marieclaireten, Veldhuisf, Bas J., H. van de Wielg. Towards a physics-based understanding of fruit frost protection using wind machines. Agricultural and Forest Meteorology. Volumes 282-283, 15 March 2020, 107868. [Google Scholar]
  3. John G. Duman, Michael J. Wisniewski. The use of antifreeze proteins for frost protection in sensitive crop plants. Environmental andExperimental Botany. Volume 106, October 2014, Pages 60–69. [Google Scholar]
  4. Andrew D. Richardson, Trevor F. Keenan, Mirco Migliavacca, Youngryel Ryu, Oliver Sonnentag, Michael Toomey. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology. Volume 169, 15 February 2013, Pages 156–173. [Google Scholar]
  5. Yu. F. Yakuba. Technological measures for the protection of thermophilic fruit crops under winter stress. Fruit growing and viticulture of South Russia, 2013, No. 22 (4), pp. 129–136. [Google Scholar]
  6. E. L. Bydder, M. D. Lowe. Frost protection with artificial fogs. - New Zealand. N.Z.J. Exper. Agr. 1985, vol. 13, No. 3, pp. 195–200. [Google Scholar]
  7. Summary of the harvest of agricultural crops by regions and districts of the Kyrgyz Republic as of December 20, 2019. http://stat.kg/statistics/selskoe-hozyaistvo/. [Google Scholar]
  8. Viviana Tudela, Fernando Santibanez. Modelling impact of freezing temperatures on reproductive organs of deciduous fruit trees. Agricultural and Forest Meteorology. Volumes 226-227, 15 October 2016, Pages 28–36. [Google Scholar]
  9. US Patent No. 3561157, IPC A01G 13/06, 1971. [Google Scholar]
  10. A. B. Bakhtadze, Sh. A. Mestvirishvili, I. G. Shekriladze. Inventor’s certificate of the USSR No. 969205. Method of heat protection of plants and device for its implementation. IPC A01G, 13/06. 1982. [Google Scholar]
  11. French Patent No. 2402177, IPC F28D 15/00, 1979. [Google Scholar]
  12. French Patent No. 2428222, IPC F28D 15/00, 1980. [Google Scholar]
  13. D.G. Hessayon. The easy care garden expert.- Moscow Kladez (Russian edition), 2009. - p. 128. [Google Scholar]
  14. I. G. Shekriladze, Sh. A. Mestvirishvili, G. V. Ratiani, D. G. Russhivili. Inventor’s certificate of the USSR No. 996839. Heat pipe. IPC F28D 15/00, 1983. [Google Scholar]
  15. V. M. Butrin, V. V. Dvirnyi, M. I. Sokolov, E. V. Aferenko. Patent of the Russian Federation No. 2261405. Thermosyphon. IPC F28D 15/02, 2005. [Google Scholar]
  16. Yu. F. Yakuba. Patent of the Russian Federation No. 2522522. Method of handling garden trees and grapes for protection from low temperatures and spring frosts. IPC A01G 7/06, 2014. [Google Scholar]
  17. I. I. Lavreichuk, I. A. Kretov. Inventor’s certificate of the USSR No. 522837. Method for increasing the heat-conserving capacity of polymer film covers for plant protection. IPC A01G 13/02, A01G 9/26, 1976. [Google Scholar]
  18. Guillaume Charrier, Jérôme Ngao, Marc Saudreau, Thierry Améglio. Effects of environmental factors and management practices on microclimate, winter physiology, and frost resistance in trees. Frontiers Plant Science, 28 April 2015. DOI: 10.3389/fpls.2015.00259. [Google Scholar]
  19. C.Y. Choi, W. Zimmt, G. Giacomelli. Freeze and frost protection with aqueous foam—Foam development. American Society for Horticultural Science. Volume 9, Pages 661–669. [Google Scholar]
  20. V. A. Stepanov, A. E. Menshikov et al. Patent of the Russian Federation No. 2198499. Methods of protecting fruit trees from frost. IPC A01G 7/06, A01N 33/22, 2003. [Google Scholar]
  21. S. K. Sastri, J. R. Philips, C. T. Morrow, Prediction of sprinkler off-times during frost protection of apple buds: a heat transfer model. - USA. J. Agr. EnggRes. 1985, vol. 31, No. 4, - pp. 283–295. [Google Scholar]
  22. T. Holybowich. The protection of the blooming gardens from spring frosts. - Poland. Sadnowoczesny, 1991, vol. 1, 5. - pp. 5–12. [Google Scholar]
  23. V. M. Polyaev, A. A. Genbach. Management of heat transfer in porous structures: Proceedings of the Russian Academy of Sciences, Moscow: Energy and Transport, vol. 38, No. 6, 1992, pp. 105–110. [Google Scholar]
  24. Genbach, A. A. Thermal characteristics of capillary-porous heat exchangers. Collection. Power engineering, heat communications and higher education in modern conditions. Almaty, 2002, pp. 73–76. [Google Scholar]
  25. V. Polyaev. Control of Heat Transfer in a Porons Cooling System. Second world conference on experimental heat transfer, fluid mechanics and thermodynamics. - Dubrovnik, Yugoslavia. 1991, - pp. 639–644. [Google Scholar]
  26. Nurzhan Murat, Y. J. Osmonov, B. S. Toktonaliev, Patent of the Kyrgyz Republic No. 1972. Device for controlling the phenophases of fruit trees. IPC A01G 7/00 / 2017. Bul. No. 8. [Google Scholar]
  27. Y. J. Osmonov, Nurzhan Murat., E. Zh. Abdulin. Method control of the phenophases of fruit trees by heating or cooling the plant with wind or solar energy. - Bishkek: Bulletin of K. I. Skryabin Kyrgyz National Agrarian University, No. 1, 2014, pp. 17–23. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.