Open Access
Issue
E3S Web Conf.
Volume 288, 2021
International Symposium “Sustainable Energy and Power Engineering 2021” (SUSE-2021)
Article Number 01067
Number of page(s) 6
DOI https://doi.org/10.1051/e3sconf/202128801067
Published online 14 July 2021
  1. A. Metelnikov, Russian energy in 2020: challenges and realities [Electronic resource], Energy News (2020) Available at: https://novostienergetiki.ru/rossijskaya-energetika-v-2020-m-godu-vyzovy-i-realii/ [Google Scholar]
  2. Ministry of Energy of the Russian Federation [Electronic resource] Available at: https://minenergo.gov.ru/activity/statistic [Google Scholar]
  3. Energy strategy of Russia for the period up to 2035 [Electronic resource] Available at: https://ac.gov.ru/files/content/1578/11-02-14-energostrategy-2035-pdf.pdf [Google Scholar]
  4. On approval of the Energy Strategy of the Russian Federation for the period up to 2035, Order of the Government of the Russian Federation, 1523-r (9 July 2020) Available at: http://www.consultant.ru/document/cons_doc_LA W_354840/d6f20f5fdbee2bf9d4e11e67b77a307fe e59f158 [Google Scholar]
  5. A. Mogilenko, Application of artificial intelligence algorithms in the world energy [Electronic resource], Newspaper “Energy and Industry of Russia”, 13-14, 345–346 (July 2018) Available at: https://www.eprussia.ru/epr/345-346/4513899.htm [Google Scholar]
  6. Experts: Russian energy specialists will save trillions of rubles due to artificial intelligence [Electronic resource], TASS (23 December 2020) Available at: https://tass.ru/ekonomika/10330409 [Google Scholar]
  7. V. Loboda, The Russian market of new electric vehicles doubled in 2020 [Electronic resource], Analytical agency “Autostat” (28 January 2021) Available at: https://yandex.ru/turbo/autostat.ru/s/news/47137/ [Google Scholar]
  8. E. Dubinkin, Electric vehicles: If there is infrastructure, there will be demand [Electronic resource] Available at: https://www.m.eprussia.ru/epr/400/3262168.htm [Google Scholar]
  9. N. Haefner, J. Wincent, O. Gassmann, Artificial intelligence and innovation management: A review, framework, and research agenda [Electronic resource], Technological Forecasting and Social Change, 162, 120392 (18 October 2020) Available at: https://reader.elsevier. com/reader/sd/pii/S004016 252031218X?token=221F4EA74E45B0253CAF FFCA18B54CFC5DD956E8B0DFB2822D86F458948CDA6943F8914C487D6C90FF1ED8D8660 4090B [Google Scholar]
  10. R. Foresti, S. Rossi, N. Delmonte, Smart Society and Artificial Intelligence: Big Data Scheduling and the Global Standard Method Applied to Smart Maintenance [Electronic resource], Engineering, 6 (7), 835–846 (29 January 2020) Available at: https://reader.elsevier.com/reader/sd/pii/S2095809920300266?token=1BCECADEF6A6AF1BBA3EC6ABD83A4B2A60EB1343A5013F9FB6A605924E5B8CEDCC29C5EC7D86680C25731EF396 21F488 [Google Scholar]
  11. A. Soteris, Kalogirou Artificial intelligence in energy and renewable energy systems [Electronic resource] Available at: https://www.researchgate.net/publication/41117170_Artificial_intelligence_in_energy_and_renew able_energy_systems [Google Scholar]
  12. P. Liu, W. Jiang, H. Sun, Research and application of artificial intelligence service platform for the power field, Global Energy Interconnection, 3 (2), 175–185 (April 2020) Available at: https://reader.elsevier.com/reader/sd/pii/S2096511720300517?token=D3D05B175DB592A7295698EB0BA6CD9C7CA534ADA04F5647AC88A05 8BE0BECC6EEFE6E393053FA41A1550C92612582E2 [Google Scholar]
  13. K. Sennaar Artificial Intelligence for Energy Efficiency and Renewable Energy - 6 Current Applications [Electronic resource] Available at: https://emerj.com/ai-sector-overviews/artificial-intelligence-for-energy-efficiency-and-renewable-energy/ [Google Scholar]
  14. Y. Himeur, K. Ghanem, Abbes Amira Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives [Electronic resource], Applied Energy, 287, 116601 (9 February 2021) Available at: https://reader.elsevier.com/reader/sd/pii/S0306261921001409?token=CE0F2891D972D47E04CFD683E9D918D40C6E91C82FF78ED83E2EC197596BF1BD5C69DD82A25702C1B4902D920BAF E8D1 [Google Scholar]
  15. I. Antonopoulos, V. Robu, S. Wattam, Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review [Electronic resource], Renewable and Sustainable Energy Reviews, 130, 109899 (10 June 2020) Available at: https://reader.elsevier.com/reader/sd/pii/S136403 212030191X?token=44EA325F499599A24A009A830947103181C12E098339AA976A46BC2E3C1081B29D0AE4B5CE0F2FCACDAB78D3617 1C5D4 [Google Scholar]
  16. D. Raspopov, P. Belousov, Development of methods and algorithms for identification of a type of electric energy consumers using artificial intelligence and machine learning models for Smart Grid Systems [Electronic resource], Procedia Computer Science, 169, 597–605 (15 April 2020) Available at: https://reader.elsevier.com/reader/sd/pii/S187705 0920303276?token=96555DF4D4502528D4A6F BF514D84A5E1382E4A1A46BE3DEF95C9714 7AF076F429F680FCA0F25CAEB3D76230C6B2 15DA [Google Scholar]
  17. R. Rentsch, C. Heinzel, E. Brinksmeier, Artificial Intelligence for an Energy and Resource Efficient Manufacturing Chain Design and Operation [Electronic resource], Procedia CIRP, 33, 139–144 (2015) Available at: https://reader.elsevier.com/reader/sd/pii/S221282 7115006691 ?token=0054E23241AE22CF4EEA3960363327D62324CA35EF906A99D36EBDA22B0DB07BB50212DAA62D1054DB4A490CC80 AA135. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.