Open Access
Issue
E3S Web Conf.
Volume 288, 2021
International Symposium “Sustainable Energy and Power Engineering 2021” (SUSE-2021)
Article Number 01099
Number of page(s) 4
DOI https://doi.org/10.1051/e3sconf/202128801099
Published online 14 July 2021
  1. Sultanguzin, I.A.; Zhigulina, E.V; Yavorovsky, Y.V; Kalyakin, I.D.; Govorin, A. V; Fedyukhin, A.V; Krolin, A.A.; Guzhov, S.V; Derevianko, O.; Mukhametova, L. Development strategy of the energy supply system for MPEI campus blocks based on green building.; 2019; Vol. 288. [Google Scholar]
  2. Ricciu, R.; Besalduch, L.A.; Galatioto, A.; Ciulla, G. Thermal characterization of insulating materials. Renew. Sustain. Energy Rev. 2016, 82, 1765–1773. [CrossRef] [Google Scholar]
  3. Agoudjil, B.; Benchabane, A.; Boudenne, A.; Ibos, L.; Fois, M. Renewable materials to reduce building heat loss: Characterization of date palm wood. Energy Build. 2011, 43, 491–497, DOI: 10.1016/j.enbuild.2010.10.014. [CrossRef] [Google Scholar]
  4. Heat-insulating Materials and Sound-absorbing Materials. In Building Materials in Civil Engineering; 2011; pp. 304–423. [Google Scholar]
  5. Karpov, D.F. Thermal methods and means of verification the thermal conductivity of the thermal paint. Bull. BSTU named after V.G. Shukhov 2019, 2, 61–68, doi: https://doi:10.12737/article_5c73fc15ccba41.40690275. [Google Scholar]
  6. Pavlov, M.; Karpov, D.; Akhmetova, I.; Monarkin, N. Assessment of energy efficiency of application heat-insulating paint for the needs of district heat supply systems. E3S Web Conf. 2020, 178, DOI: 10.1051/e3sconf/202017801004. [Google Scholar]
  7. Asdrubali, F.; D’Alessandro, F.; Schiavoni, S. A review of unconventional sustainable building insulation materials. Sustain. Mater. Technol. 2015, DOI: 10.1016/j.susmat.2015.05.002. [Google Scholar]
  8. Gudkov, P.; Kagan, P.; Pilipenko, A.; Zhukova, E.Y.; Zinovieva, E.A.; Ushakov, N.A. Usage of thermal isolation systems for low-rise buildings as a component of information models. E3S Web Conf. 2019, 97, 01039, DOI: 10.1051/e3sconf/20199701039. [CrossRef] [Google Scholar]
  9. Voropai, L.; Duryagina, Y.A.; Sinitsyn, A.A.; Yukhtarova, O.S. Development of a new method for producing heat-insulating materials based on high-lying peat and fluorine-containing polymers. In Proceedings of the Materials of the All-Russian Scientific and Practical Conference of Students and Young Scientists “Modern Trends in the Development of Chemical Technology, Industrial Ecology and Technosphere Safety”; SPbGUPTD: St. Petersburg, 2020; pp. 310–313. [Google Scholar]
  10. Pavlov, M.V.; Karpov, D.F.; Berezina, V.P. Modern heat-insulating materials for improving the thermal protection properties of building structures and energy efficiency of engineering systems. Pp. 81–87 (2020). In Proceedings of the Scientific and technical problems of improvement and development of gas power supply systems. Collection of scientific works on the materials of the III International Scientific and Practical Conference; SSTU named after Yu. A. Gagarin: Saratov, 2020; pp. 81-87. [Google Scholar]
  11. Pavlov, M.V.; Karpov, D.F.; Mamonova, V.S. Comparative techno-economic analysis of the modern heat-insulating materials. In Proceedings of the Energy: Efficiency, reliability, safety: proceedings of the XXI all-Russian scientific-technical conference; Tomsk Polytechnic University: Tomsk, 2015; pp. 9–11. [Google Scholar]
  12. Voropai, L., Kuznetsova, O., Sinitsyn, A., … Atamanyuk, I., Ilyashenko, S., The Influence of the Relative Content of Peat and Mineral Binder on Thermal Insulation Composite Performance [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.