Open Access
Issue
E3S Web Conf.
Volume 289, 2021
International Conference of Young Scientists “Energy Systems Research 2021”
Article Number 02002
Number of page(s) 9
Section Heat-and-Power Engineering
DOI https://doi.org/10.1051/e3sconf/202128902002
Published online 13 July 2021
  1. Vedruchenko VR, Zhdanov NV, Kulkov MV. Choice of criterion of the estimation of efficiency of development and reconstruction of the thermal schema of power setting. Vestnik Sibirskoj gosudarstvennoj avtomobil’no-dorozhnoj akademii = The Russian Automobile and Highway Industry Journal Vestnik SibADI. 2008;7:60–64 р. (In Russ.) [Google Scholar]
  2. Kler AM, Tyurina EA. Optimization studies of power plants and complexes. Novosibirsk: Geo; 2016, 298 р. (In Russ.) [Google Scholar]
  3. Gutorov VF, Simoyu LL, Efros EI. Methods for enhancing the economic efficiency of steam-turbine installations of cogeneration stations. Teploenergetika = Thermal Engineering. 2001;6:32–37. (In Russ.) [Google Scholar]
  4. Lupov NS. Operating principle of ejector. Omskij nauchnyj vestnik = Omsk Scientific Bulletin. 2015;2:167–168. (In Russ.) [Google Scholar]
  5. Lazarev LYa, Sokolov VS, Fadeev VA, Chizhov VV. Upgrading options of high-power turbine low pressure cylinders. Elektricheskie seti. Available from: https://leg.co.ua/arhiv/generaciya/variantymodernizaciicnd-turbin-bolshoy-moschnosti.html [Accessed 12th December 2020]. (In Russ.) [Google Scholar]
  6. Merkulov VA, Marchenko EM. Effect of condensing device operation on turbine plant efficiency depending on power plant load. In: Radioelektronika, elektrotekhnika, energetika: tezisy dokladov IX Mezhdunarodnoj nauchnotekhnicheskoj konferencii studentov i aspirantov = Radio electronics, electrical engineering, power engineering: abstracts of IX International scientific and technical conference of students and postgraduates: in 3 vol. Vol. 3. 4–5 March 2003, Moscow. Moscow: MEI; 2003, р. 148–149. (In Russ.) [Google Scholar]
  7. Moshkarin AV, Kopsov AYa, Velikorossov VV, Taran OE, Platov AI. Thermal efficiency of surface HD polyethylene 2 replacement with a mixing one. In: Trudy Ivanovskogo gosudarstvennogo energeticheskogo universiteta. Iss. 3. Ivanovo: Ivanovo State Power Engineering University; 1999, р. 30–32. (In Russ.) [Google Scholar]
  8. Alekseyuk VE, Maksimov AS, Safronov PG. Improved identification methods for thermal power equipment mathematical models. Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta = Proceedings of Irkutsk State Technical University. 2019;23(3):503–515. (In Russ.) https://doi.org/10.21285/1814-3520-2019-3-503-515 [Google Scholar]
  9. Alekseiuk V. Improving the efficiency of the three-stage technique of mathematical model identification of complex thermal power equipment. In: ENERGY-21 – Sustainable Development & Smart Management: E3S Web of Conferences. 2020;209. https://doi.org/10.1051/e3sconf/202020903002 [Google Scholar]
  10. Alexeyuk VE. An improved technique for identification of mathematical models of thermal power equipment. Energy Systems Research. 2018;1(3):53–60. https://doi.org/10.25729/esr.2018.03.0007 [Google Scholar]
  11. Kler AM. Effective methods of circuit-parametric optimization of complex thermal power plants: development and application. Novosibirsk: Geo; 2018, 145 р. (In Russ.) [Google Scholar]
  12. Kler AM, Zharkov PV, Epishkin NO. Parametric optimization of supercritical power plants using gradient methods. Energy. 2019;189. https://doi.org/10.1016/j.energy.2019.116230 [Google Scholar]
  13. Kler AM, Potanina YuM, Marinchenko AY. Cooptimization of thermal power plant flowchart, thermodynamic cycle parameters, and design parameters of components. Energy. 2020;193. https://doi.org/10.1016/j.energy.2019.116679 [Google Scholar]
  14. Baghsheikhi M, Sayyaadi H. Real-time exergoeconomic optimization of a steam power plant using a soft computing-fuzzy inference system. Energy. 2016;114:868–884. https://doi.org/10.1016/j.energy.2016.08.044 [Google Scholar]
  15. Wang Ligang, Yang Yongping, Dong Changqing, Morosuk T, Tsatsaronis G. Parametric optimization of supercritical coal-fired power plants by MINLP and differential evolution. Energy Conversion and Management. 2014;85:828–838. https://doi.org/10.1016/j.enconman.2014.01.006 [Google Scholar]
  16. Wang Chaojun, He Boshu, Yan Linbo, Pei Xiaohui, Shinan Chen. Thermodynamic analysis of a low-pressure economizer based waste heat recovery system for a coal-fired power plant. Energy. 2014;65:80–90. https://doi.org/10.1016/j.energy.2013.11.084 [Google Scholar]
  17. Boyaghchi FA, Molaie H. Sensitivity analysis of exergy destruction in a real combined cycle power plant based on advanced exergy method. Energy Conversion and Management. 2015;99:374–386. https://doi.org/10.1016/j.enconman.2015.04.048 [Google Scholar]
  18. Suresh MVJJ, Reddy KS, Ajit Kumar Kolar. ANN-GA based optimization of a high ash coal-fired supercritical power plant. Applied Energy. 2011;88(12):4867–4873. https://doi.org/10.1016/j.apenergy.2011.06.029 [Google Scholar]
  19. Sobolev SP. К-160-130 HТGZ Steam turbine. Moscow: Energiya; 1980, 192 р. (In Russ.) [Google Scholar]
  20. Aronson KE, Blinkov SN, Brezgin VI, Brodov YuM, Kupcov VK, Larionov ID, et al. Power plant heat exchangers. Ekaterinburg: Ural Federal University; 2015. Available from: https://openedu.urfu.ru/files/book/ [Accessed 12th December 2020]. (In Russ.) [Google Scholar]
  21. Kler AM, Dekanova NP, Tyurina EA, Korneeva ZR. Thermal power systems: optimization studies. Novosibirsk: Nauka; 2005, 236 р. (In Russ.) [Google Scholar]
  22. Kler AM, Dekanova NP, Skripkin SK. et al. Mathematical modeling and optimization in the problems of thermal power plant operational control. Novosibirsk: Nauka, Siberian enterprise RAS; 1997, 120 р. (In Russ.) [Google Scholar]
  23. Novickij PV, Zograf IA. Estimation of measurement result errors. Leningrad: Energoatomizdat, Leningradskoe otdelenie; 1991, 303 р. (In Russ.) [Google Scholar]
  24. Kobzar’ AI. Applied mathematical statistics. For engineers and scientists. Moscow: Fizmatlit; 2012, 816 р. (In Russ.) [Google Scholar]
  25. Zabuga FV. Using power unit mathematical model for its technological scheme modernization. In: Sistemnye issledovaniya v energetike: trudy molodyh uchenyh Institutа sistem energetiki im. L.A. Melent’eva SO RAN = System research in power engineering: works of young scientists of Melentiev Energy Systems Institute SB RAS. Iss. 48. Irkutsk: Melentiev Energy Systems Institute of the Siberian Branch of the Russian Academy of sciences; 2016, р. 51–56. (In Russ.) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.