Open Access
Issue
E3S Web Conf.
Volume 290, 2021
2021 3rd International Conference on Geoscience and Environmental Chemistry (ICGEC 2021)
Article Number 01031
Number of page(s) 6
Section Environmental Chemistry and Chemical Technology Application
DOI https://doi.org/10.1051/e3sconf/202129001031
Published online 14 July 2021
  1. Giepmans, B. N., Adams, S. R., Ellisman, M. H., & Tsien, R. Y. (2006). The fluorescent toolbox for assessing protein location and function. science, 312(5771), 217–224. [Google Scholar]
  2. Palmer, A. E., & Tsien, R. Y. (2006). Measuring calcium signaling using genetically targetable fluorescent indicators. Nature protocols, 1(3), 1057. [Google Scholar]
  3. Sanderson, M. J., Smith, I., Parker, I., & Bootman, M. D. (2014). Fluorescence microscopy. Cold Spring Harbor Protocols, 2014(10), pdb-top071795. [Google Scholar]
  4. Gustafsson, M. G., Shao, L., Carlton, P. M., Wang, C. R., Golubovskaya, I. N., Cande, W. Z., ... & Sedat, J. W. (2008). Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophysical journal, 94(12), 4957–4970. [Google Scholar]
  5. Hell, S. W. (2003). Toward fluorescence nanoscopy. Nature biotechnology, 21(11), 1347–1355. [Google Scholar]
  6. Pawley, J. (Ed.). (2006). Handbook of biological confocal microscopy (Vol. 236). Springer Science & Business Media. [Google Scholar]
  7. Zhao H, Traganos F, Dobrucki J, Wlodkowic D, Darzynkiewicz Z. Induction of DNA damage response by the supravital probes of nucleic acids. Cytom Part A. 2009;75A:510–9. https://doi.org/10.1002/cyto.a.20727. [Google Scholar]
  8. Simeonov, A., & Davis, M. I. (2018). Interference with fluorescence and absorbance. Assay Guidance Manual [Internet]. [Google Scholar]
  9. Wäldchen, S., Lehmann, J., Klein, T., Van De Linde, S., & Sauer, M. (2015). Light-induced cell damage in live-cell super-resolution microscopy. Scientific reports, 5(1), 1–12. [Google Scholar]
  10. Becker, P.L. Quantitative fluorescence measurements. In Fluorescence Imaging Spectroscopy and Microscopy; Wang, X.F., Herman, B., Eds.; John Wiley & Sons, Inc.: New York, 1996; 1–29. [Google Scholar]
  11. Agard, D. A., Hiraoka, Y., Shaw, P., & Sedat, J. W. (1989). Fluorescence microscopy in three dimensions. Methods in cell biology, 30, 353–377. [Google Scholar]
  12. Xue, Y., Davison, I. G., Boas, D. A., & Tian, L. (2020). Single-shot 3D wide-field fluorescence imaging with a Computational Miniature Mesoscope. Science advances, 6(43), eabb7508. [Google Scholar]
  13. Inoué, S. (2006). Foundations of confocal scanned imaging in light microscopy. In Handbook of biological confocal microscopy (pp. 1-19). Springer, Boston, MA. [Google Scholar]
  14. Semwogerere, D., & Weeks, E. R. (2005). Confocal microscopy. Encyclopedia of biomaterials and biomedical engineering, 23, 1–10. [Google Scholar]
  15. Amos, W. B., White, J. G., & Fordham, M. (1987). Use of confocal imaging in the study of biological structures. Applied optics, 26(16), 3239–3243. [Google Scholar]
  16. Brakenhoff, G. J., Voort, H. V. D., Spronsen, E. V., & Nanninga, N. (1986). Three‐Dimensional Imaging by Confocal Scanning Fluorescence Microscopy a. Annals of the New York Academy of Sciences, 483(1), 405–415. [Google Scholar]
  17. Petráň, M., Hadravský, M., Egger, M. D., & Galambos, R. O. B. E. R. T. (1968). Tandem-scanning reflected-light microscope. JOSA, 58(5), 661–664. [Google Scholar]
  18. Watson, A. M., Rose, A. H., Gibson, G. A., Gardner, C. L., Sun, C., Reed, D. S., ... & Watkins, S. C. (2017). Ribbon scanning confocal for high-speed high-resolution volume imaging of brain. PloS one, 12(7), e0180486. [Google Scholar]
  19. Tsien, R.Y.; Bacskai, B.J. Video-rate confocal microscopy. In Handbook of Biological Confocal Microscopy, 2nd Ed.; Pawley, J.B., Ed.; Plenum Press: New York, 1995; 459–478. [Google Scholar]
  20. Korobchevskaya, K., Lagerholm, B. C., Colin-York, H., & Fritzsche, M. (2017, September). Exploring the potential of airyscan microscopy for live cell imaging. In Photonics (Vol. 4, No. 3, p. 41). Multidisciplinary Digital Publishing Institute. [Google Scholar]
  21. Mandracchia, B., Hua, X., Guo, C., Son, J., Urner, T., & Jia, S. (2020). Fast and accurate sCMOS noise correction for fluorescence microscopy. Nature Communications, 11(1), 1–12. https://doi.org/10.1038/s41467-019-13841-8 [Google Scholar]
  22. Moreno, I., Araiza, J. J., & Avendano-Alejo, M. (2005). Thin-film spatial filters. Optics Letters, 30(8), 914–916. [Google Scholar]
  23. Johnson, A., & Vert, G. (2017). Single event resolution of plant plasma membrane protein endocytosis by TIRF microscopy. Frontiers in Plant Science, 8, 612. https://doi.org/10.3389/fpls.2017.00612 [Google Scholar]
  24. Barbieri, L., Colin-York, H., Korobchevskaya, K., Li, D., Wolfson, D. L., Karedla, N., … Fritzsche, M. (2021). Two-dimensional TIRF-SIM–traction force microscopy (2D TIRF-SIM-TFM). Nature Communications, 12(1), 1–14. https://doi.org/10.1038/s41467-021-22377-9 [Google Scholar]
  25. Zobiak, B., & Failla, A. V. (2018). Advanced spinning disk-TIRF microscopy for faster imaging of the cell interior and the plasma membrane. Journal of Microscopy, 269(3), 282–290. https://doi.org/10.1111/jmi.12626 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.