Open Access
Issue
E3S Web Conf.
Volume 292, 2021
2021 2nd International Conference on New Energy Technology and Industrial Development (NETID 2021)
Article Number 03089
Number of page(s) 9
Section Environmental Sustainable Development and Industrial Transformation
DOI https://doi.org/10.1051/e3sconf/202129203089
Published online 09 September 2021
  1. Jia, C., J. Wei, and H. Xiaobo, Research Progress of exocrine in Digestive tract tumor Metastasis% J Laboratory Medicine. 2020. 35(12): p. 1220-1223. [Google Scholar]
  2. Jingfeng, Z., et al., Endoplasmic reticulum stress and tumor metastasis%J Journal of Sichuan University (Medical Edition). 2021. 52(01): p. 11-15. [Google Scholar]
  3. Yang, J., et al., Abstract 1526: KPNA4 promotes prostate cancer metastasis through TNFAB mediated cytokine crosstalk in tumor microenvironment %J Cancer Research. 2016. 76(14_Supplement). [Google Scholar]
  4. Hui, T., et al., Research progress of exosomal-derived microRNAs in disease diagnosis and treatment. Journal of Central South University (Medical Science), 2015. 40(11): p. 1270-1275. [Google Scholar]
  5. Jiajia, J., et al. Research progress of exosome non-coding RNA in tumor. in The 4th International Conference on Public Health and Medical Sciences 2019. 2019. Xi ’an, Shaanxi, China. [Google Scholar]
  6. Xiao, L., et al., Endometrial Cancer Cells Promote M2-Like Macrophage Polarization by Delivering Exosomal miRNA-21 under Hypoxia Condition. J Immunol Res, 2020. 2020: p. 9731049. [PubMed] [Google Scholar]
  7. Jie, H., et al., Research progress in exosome extraction and preservation techniques. Chinese Journal of Cell Biology, 2021. 43(02): p. 451-459. [Google Scholar]
  8. Maas, S.L.N., X.O. Breakefield, and A.M. Weaver, Extracellular Vesicles: Unique Intercellular Delivery Vehicles. Trends Cell Biol, 2017. 27(3): p. 172-188. [Google Scholar]
  9. Juxian, D., et al., Research progress of oncogenic exosomal miRNAs in regulating vascularization of bone malignancies. Journal of Clinical Oncology, 2021. 26(01): p. 84-88. [Google Scholar]
  10. Nieto, M.A., et al., EMT: 2016. Cell, 2016. 166(1): p. 21-45. [Google Scholar]
  11. Xiaochao, L., et al., Research progress on the role of stromal cell regulated EMT in tumor invasion and metastasis. Life science, 2021. 33(01): p. 95-103. [Google Scholar]
  12. Dongre, A. and R.A. Weinberg, New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol, 2019. 20(2): p. 69-84. [PubMed] [Google Scholar]
  13. Li, L., et al., Exosomes Derived from Hypoxic Oral Squamous Cell Carcinoma Cells Deliver miR-21 to Normoxic Cells to Elicit a Prometastatic Phenotype. Cancer Res, 2016. 76(7): p. 1770-80. [Google Scholar]
  14. Barrallo-Gimeno, A. and M.A. Nieto, The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development, 2005. 132(14): p. 3151-61. [Google Scholar]
  15. Sun, C.C., et al., MicroRNA-346 facilitates cell growth and metastasis, and suppresses cell apoptosis in human non-small cell lung cancer by regulation of XPC/ERK/Snail/E-cadherin pathway. Aging (Albany NY), 2016. 8(10): p. 2509-2524. [PubMed] [Google Scholar]
  16. Yang, R., et al., Correlation Between Single-Nucleotide Polymorphisms Within miR-30a and Related Target Genes and Risk or Prognosis of Nephrotic Syndrome. DNA Cell Biol, 2018. 37(3): p. 233-243. [PubMed] [Google Scholar]
  17. Li, Q., et al., Suppression of epithelial-mesenchymal transition in hepatocellular carcinoma cells by Krüppel-like factor 4. Oncotarget, 2016. 7(20): p. 29749-60. [Google Scholar]
  18. Nan-mi-wei, L., et al., Correlation of miR-221 expression level with PTEN/Akt signaling pathway and EMT-related gene expression in glioma tissue. Journal of Hainan Medical College, 2016. 22(20): p. 2369-2372. [Google Scholar]
  19. Yang, B., et al., High-metastatic cancer cells derived exosomal miR92a-3p promotes epithelial-mesenchymal transition and metastasis of low-metastatic cancer cells by regulating PTEN/Akt pathway in hepatocellular carcinoma. Oncogene, 2020. 39(42): p. 6529-6543. [PubMed] [Google Scholar]
  20. Gavert, N. and A. Ben-Ze’ev, beta-Catenin signaling in biological control and cancer. J Cell Biochem, 2007. 102(4): p. 820-8. [Google Scholar]
  21. Liu, F., et al., Biomarkers for EMT and MET in breast cancer: An update. Oncol Lett, 2016. 12(6): p. 4869-4876. [Google Scholar]
  22. Zhang, X., et al., Exosomal miR-1255b-5p targets human telomerase reverse transcriptase in colorectal cancer cells to suppress epithelial-to-mesenchymal transition. Mol Oncol, 2020. 14(10): p. 2589-2608. [Google Scholar]
  23. Yu, Y., et al., Hypoxia-induced exosomes promote hepatocellular carcinoma proliferation and metastasis via miR-1273f transfer. Exp Cell Res, 2019. 385(1): p. 111649. [PubMed] [Google Scholar]
  24. Huang, H., et al., MiR-23a transcriptional activated by Runx2 increases metastatic potential of mouse hepatoma cell via directly targeting Mgat3. Sci Rep, 2018. 8(1): p. 7366. [Google Scholar]
  25. You, X., et al., Exosomal miR-663b exposed to TGF ββ1 promotes cervical cancer metastasis and epithelial-mesenchymal transition by targeting MGAT3. Oncol Rep, 2021. 45(4). [Google Scholar]
  26. Wenhao, C., Y. Ming, and Z. Yanqiao, Research progress on the mechanism of epithelialmesenchymal transformation in malignant tumors. China tumor, 2016. 25(01): p. 51-57. [Google Scholar]
  27. Bai, J., et al., Exosomal miR-128-3p Promotes Epithelial-to-Mesenchymal Transition in Colorectal Cancer Cells by Targeting FOXO4 via TGFβ/SMAD and JAK/STAT3 Signaling. Front Cell Dev Biol, 2021. 9: p. 568738. [PubMed] [Google Scholar]
  28. Qu, M.H., et al., miR-93 promotes TGF-β-induced epithelial-to-mesenchymal transition through downregulation of NEDD4L in lung cancer cells. Tumour Biol, 2016. 37(4): p. 5645-51. [PubMed] [Google Scholar]
  29. Li, K., et al., Exosomes play roles in sequential processes of tumor metastasis. Int J Cancer, 2019. 144(7): p. 1486-1495. [Google Scholar]
  30. Togo, S., et al., Carcinoma-associated fibroblasts are a promising therapeutic target. Cancers (Basel), 2013. 5(1): p. 149-69. [Google Scholar]
  31. Cirri, P. and P. Chiarugi, Cancer-associatedfibroblasts and tumour cells: a diabolic liaison driving cancer progression. Cancer Metastasis Rev, 2012. 31(1-2): p. 195-208. [Google Scholar]
  32. Wang, J., et al., Exosomal miR-27a Derived from Gastric Cancer Cells Regulates the Transformation of Fibroblasts into Cancer-Associated Fibroblasts. Cell Physiol Biochem, 2018. 49(3): p. 869-883. [PubMed] [Google Scholar]
  33. Baroni, S., et al., Exosome-mediated delivery of miR-9 induces cancer-associated fibroblast-like properties in human breast fibroblasts. Cell Death Dis, 2016. 7(7): p. e2312. [PubMed] [Google Scholar]
  34. Zhuang, G., et al., Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK-STAT pathway. Embo j, 2012. 31(17): p. 3513-23. [PubMed] [Google Scholar]
  35. Yang, S.S., et al., Breast cancer-derived exosomes regulate cell invasion and metastasis in breast cancer via miR-146a to activate cancer associated fibroblasts in tumor microenvironment. Exp Cell Res, 2020. 391(2): p. 111983. [PubMed] [Google Scholar]
  36. Zhou, Y., et al., Hepatocellular carcinoma-derived exosomal miRNA-21 contributes to tumor progression by converting hepatocyte stellate cells to cancer-associated fibroblasts. J Exp Clin Cancer Res, 2018. 37(1): p. 324. [PubMed] [Google Scholar]
  37. Fang, T., et al., Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat Commun, 2018. 9(1): p. 191. [PubMed] [Google Scholar]
  38. Fan, J., et al., miR-210 transferred by lung cancer cell-derived exosomes may act as proangiogenic factor in cancer-associated fibroblasts by modulating JAK2/STAT3 pathway. Clin Sci (Lond), 2020. 134(7): p. 807-825. [PubMed] [Google Scholar]
  39. Zhou, W., et al., Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell, 2014. 25(4): p. 501-15. [Google Scholar]
  40. Yang, H., et al., Exosome-Derived miR-130a Activates Angiogenesis in Gastric Cancer by Targeting C-MYB in Vascular Endothelial Cells. Mol Ther, 2018. 26(10): p. 2466-2475. [Google Scholar]
  41. Fang, J.H., et al., Hepatoma cell-secreted exosomal microRNA-103 increases vascular permeability and promotes metastasis by targeting junction proteins. Hepatology, 2018. 68(4): p. 1459-1475. [PubMed] [Google Scholar]
  42. Zhou, X., et al., Melanoma cell-secreted exosomal miR-155-5p induce proangiogenic switch of cancer-associated fibroblasts via SOCS1/JAK2/STAT3 signaling pathway. J Exp Clin Cancer Res, 2018. 37(1): p. 242. [Google Scholar]
  43. Hsu, Y.L., et al., Hypoxic lung cancer-secreted exosomal miR-23a increased angiogenesis and vascular permeability by targeting prolyl hydroxylase and tight junction protein ZO-1. Oncogene, 2017. 36(34): p. 4929-4942. [Google Scholar]
  44. Qin, L., et al., Tumor-associated immune cells promoting Metastasis and targeted Therapy Strategies. Journal of Fudan University (Medical Sciences), 2016. 43(01): p. 104-109+121. [Google Scholar]
  45. den Haan, J.M., R. Arens, and M.C. van Zelm, The activation of the adaptive immune system: cross-talk between antigen-presenting cells, T cells and B cells. Immunol Lett, 2014. 162(2 Pt B): p. 103-12. [PubMed] [Google Scholar]
  46. Qiuyu, W., L. Tete, and C. Jingtao, Regulation of reactive oxygen species on dendritic cells. Chinese Journal of Biochemistry and Molecular Biology: p. 1-12. [Google Scholar]
  47. Sun, Z., et al., Effect of exosomal miRNA on cancer biology and clinical applications. Mol Cancer, 2018. 17(1): p. 147. [PubMed] [Google Scholar]
  48. Jin, Y., et al., ALA-PDT promotes HPV-positive cervical cancer cells apoptosis and DCs maturation via miR-34a regulated HMGB1 exosomes secretion. Photodiagnosis Photodyn Ther, 2018. 24: p. 27-35. [PubMed] [Google Scholar]
  49. Luckheeram, R.V., et al., CD4⁺T cells: differentiation and functions. Clin Dev Immunol, 2012. 2012: p. 925135. [CrossRef] [PubMed] [Google Scholar]
  50. Kimura, A. and T. Kishimoto, IL-6: regulator of Treg/Th17 balance. Eur J Immunol, 2010. 40(7): p. 1830-5. [PubMed] [Google Scholar]
  51. Asadi-Samani, M., et al., Inhibition of Th1 and Th17 Cells by Medicinal Plants and Their Derivatives: A Systematic Review. Phytother Res, 2017. 31(8): p. 1128-1139. [PubMed] [Google Scholar]
  52. Jiejun, L.P.W., Research progress of inflammation and tumor metastasis. Journal of the Second Military Medical University, 2011. 32(01): p. 84-87. [Google Scholar]
  53. Mycko, M.P., et al., MicroRNA-301a regulation of a T-helper 17 immune response controls autoimmune demyelination. Proc Natl Acad Sci U S A, 2012. 109(20): p. E1248-57. [PubMed] [Google Scholar]
  54. Zhou, J., et al., Exosomes Released from Tumor-Associated Macrophages Transfer miRNAs That Induce a Treg/Th17 Cell Imbalance in Epithelial Ovarian Cancer. Cancer Immunol Res, 2018. 6(12): p. 1578-1592. [PubMed] [Google Scholar]
  55. Zhou, J., et al., Melanoma-released exosomes directly activate the mitochondrial apoptotic pathway of CD4(+) T cells through their microRNA cargo. Exp Cell Res, 2018. 371(2): p. 364-371. [PubMed] [Google Scholar]
  56. Ye, S.B., et al., Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget, 2014. 5(14): p. 5439-52. [PubMed] [Google Scholar]
  57. Wells, A.C., E.L. Pobezinskaya, and L.A. Pobezinsky, Non-coding RNAs in CD8 T cell biology. Mol Immunol, 2020. 120: p. 67-73. [Google Scholar]
  58. Ye, S.B., et al., Exosomal miR-24-3p impedes T-cell function by targeting FGF11 and serves as a potential prognostic biomarker for nasopharyngeal carcinoma. J Pathol, 2016. 240(3): p. 329-340. [PubMed] [Google Scholar]
  59. Vignard, V., et al., MicroRNAs in Tumor Exosomes Drive Immune Escape in Melanoma. Cancer Immunol Res, 2020. 8(2): p. 255-267. [Google Scholar]
  60. Cai, J., et al., Oral squamous cell carcinoma-derived exosomes promote M2 subtype macrophage polarization mediated by exosome-enclosed miR-29a-3p. Am J Physiol Cell Physiol, 2019. 316(5): p. C731-c740. [PubMed] [Google Scholar]
  61. Wang, X., et al., Hypoxic Tumor-Derived Exosomal miR-301a Mediates M2 Macrophage Polarization via PTEN/PI3Kγ to Promote Pancreatic Cancer Metastasis. Cancer Res, 2018. 78(16): p. 4586-4598. [Google Scholar]
  62. Yong, Y., et al., Experimental study on polarization of M2 macrophages induced by miR-449 exosomes in colorectal cancer under hypoxic conditions. International Journal of Laboratory Medicine, 2021. 42(04): p. 421-425. [Google Scholar]
  63. Chanmee, T., et al., Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel), 2014. 6(3): p. 1670-90. [PubMed] [Google Scholar]
  64. Baig, M.S., et al., Tumor-derived exosomes in the regulation of macrophage polarization. Inflamm Res, 2020. 69(5): p. 435-451. [Google Scholar]
  65. Liu, J., et al., Endoplasmic Reticulum Stress Causes Liver Cancer Cells to Release Exosomal miR-23a3p and Up-regulate Programmed Death Ligand 1 Expression in Macrophages. Hepatology, 2019. 70(1): p. 241-258. [Google Scholar]
  66. Zhao, S., et al., Tumor-derived exosomal miR-934 induces macrophage M2 polarization to promote liver metastasis of colorectal cancer. J Hematol Oncol, 2020. 13(1): p. 156. [PubMed] [Google Scholar]
  67. Moradi-Chaleshtori, M., et al., In vitro and in vivo evaluation of anti-tumoral effect of M1 phenotype induction in macrophages by miR-130 and miR-33 containing exosomes. Cancer Immunol Immunother, 2021. 70(5): p. 1323-1339. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.