Open Access
Issue |
E3S Web Conf.
Volume 297, 2021
The 4th International Conference of Computer Science and Renewable Energies (ICCSRE'2021)
|
|
---|---|---|
Article Number | 01029 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/e3sconf/202129701029 | |
Published online | 22 September 2021 |
- Othmani, H., Lachiheb, M. A., Bsiri, N., Zrir, M. A., Khirouni, K., Abbes, O., & Bouaicha, M. (2020). Si-nanocrystals embedded in SiNWs to reduce thermalisation in solar cells. Optik, 221, 165299. [Google Scholar]
- Khelifi, M., Mejatty, M., Berrehar, J., & Bouchriha, H. (1985). Effet photovoltaïque dans des couches minces de phtalocyanines. Revue de physique appliquée, 20(7), 511–515 [Google Scholar]
- Abdulrazzaq, A. K., Bognar, G., & Plesz, B. (2020). Evaluation of different methods for solar cells/modules parameters extraction. Solar Energy, 196, 183–195. [Google Scholar]
- Abdulrazzaq, A. K., Bognar, G., & Plesz, B. (2020). Accurate method for PV solar cells and modules parameters extraction using I-V curves. Journal of King Saud UniversityEngineering Sciences. [Google Scholar]
- Christoffersen, P. F., & Diebold, F. X. (1997). Optimal prediction under asymmetric loss. Econometric theory, 808–817. [Google Scholar]
- Feng, Y., Hao, W., Li, H., Cui, N., Gong, D., & Gao, L. (2020). Machine learning models to quantify and map daily global solar radiation and photovoltaic power. Renewable and Sustainable Energy Reviews, 118, 109393. [Google Scholar]
- Kouassi, A. M., Mamadou, A., Ahoussi, K. E., & Biemi, J. (2014). Conception de modèles statistiques à variables hydrochimiques pour la prédiction de la conductivité électrique des eaux souterraines. LARHYSS Journal P-ISSN 1112-3680/E-ISSN 2521-9782, (20). [Google Scholar]
- Chiteka, K., Arora, R., & Sridhara, S. N. (2020). A method to predict solar photovoltaic soiling using artificial neural networks and multiple linear regression models. Energy Systems, 11(4), 981–1002. [Google Scholar]
- Nugrahaeni, R. A., & Mutijarsa, K. (2016, August). Comparative analysis of machine learning KNN, SVM, and random forests algorithm for facial expression classification. In 2016 International Seminar on Application for Technology of Information and Communication (ISemantic) (pp. 163–168). IEEE. [Google Scholar]
- Regression, Bagging and boosting. Cogent Economics & Finance, 8(1), 1729569 [Google Scholar]
- Shrivastava, S., Jeyanthi, P. M., & Singh, S. (2020). Failure prediction of Indian Banks using SMOTE, Lasso. Hans, C. (2009). Bayesian lasso regression. Biometrika, 96(4), 835–845. [Google Scholar]
- Pradhan, B. (2013). A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences, 51, 350–365. [CrossRef] [Google Scholar]
- Saporta, G. (2006). Probabilités, analyse des données et statistique. Editions Technip. [Google Scholar]
- Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R news, 2(3), 18–22. [Google Scholar]
- Afonso, B., Melo, L., Oliveira, W., Sousa, S., & Berton, L. (2019, October). Housing Prices Prediction with a Deep Learning and Random Forest Ensemble. In Anais do XVI Encontro Nacional de Inteligência Artificial e Computacional (pp. 389–400). SBC. [Google Scholar]
- Sajedi-Hosseini, F., Malekian, A., Choubin, B., Rahmati, O., Cipullo, S., Coulon, F., & Pradhan, B. (2018). A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination. Science of the total environment, 644, 954–962. [Google Scholar]
- Wen, C., Liu, S., Yao, X., Peng, L., Li, X., Hu, Y., & Chi, T. (2019). A novel spatiotemporal convolutional long short-term neural network for air pollution prediction. Science of the total environment, 654, 1091–1099. [Google Scholar]
- Rajalakshmi, S., & Titus, S. (2020). Optimal Slewing Mode Converter-based Energy Management System for Renewable Energy sources. International Journal, 9(3). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.