Open Access
Issue
E3S Web Conf.
Volume 297, 2021
The 4th International Conference of Computer Science and Renewable Energies (ICCSRE'2021)
Article Number 01030
Number of page(s) 6
DOI https://doi.org/10.1051/e3sconf/202129701030
Published online 22 September 2021
  1. K. Qian, Niu, H. Yany. Developing a gesture based remote human-robot interaction system using kinect [J]. International Journal of Smart Home, 2013, 7 (4): 203–208. [Google Scholar]
  2. S. Bhowmick, A.K. Talukdar, K.K. Sarma. Contimuous hand gesture recognition for English alphabets [C]//International Conference on Signal Processing and Integrated Networks, IEEE, 2015: 443–446. [Google Scholar]
  3. D. Tang, H.J. Chang, A. Tejam, et al. Latent regression forest: structured estimation of 3d hand poseds [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2017, 39 (7): 1374–1234. [Google Scholar]
  4. S.Q. Ren, K.M. He, R. Girshick, et al. Faster R-CNN: Towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137–1149. [CrossRef] [PubMed] [Google Scholar]
  5. C. Li, Y. Hou, P. Wang, W. Li, Joint distance maps based action recognition with convolutional neural networks, IEEE Signal Process. Lett. 24 (5) (2017) 624–628, DOI: 10.1109/LSP.2017.2678539. [Google Scholar]
  6. X. Liu, G. Zhao, 3d skeletal gesture recognition via sparse coding of time-warping invariant riemannian trajectories, in: Proceedings of the International Conference on Multimedia Modeling, Springer, 2019, pp. 678–690, DOI: 10.29007/xhfp. [Google Scholar]
  7. X. Liu, H. Shi, X. Hong, H. Chen, D. Tao, G. Zhao, Hidden states exploration for 3d skeletonbased gesture recognition, in: Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), IEEE, 2019, pp. 1846–1855, DOI: 10.1109/WACV.2019.00201. [Google Scholar]
  8. X. Chen, M. Koskela, Using appearance-based hand features for dynamic RGB-D gesture recognition, in: Proceedings of the International Conference on Pattern Recognition, 2014, pp. 411–416, DOI: 10.1109/ICPR.2014.79. [Google Scholar]
  9. A. Yao, L.V. Gool, P. Kohli, Gesture recognition portfolios for personalization, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2014, pp. 1923–1930, DOI: 10.1109/CVPR.2014.247. [Google Scholar]
  10. D. Wu, L. Shao, Leveraging hierarchical parametric networks for skeletal joints based action segmentation and recognition, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2014, pp. 724–731, DOI: 10.1109/CVPR.2014.98. [Google Scholar]
  11. B. Fernando, E. Gavves, M. JoséOramas, A. Ghodrati, T. Tuytelaars, Modeling video evolution for action recognition, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 07-12-June, 2015, pp. 5378–5387, DOI: 10.1109/CVPR.2015.7299176 [Google Scholar]
  12. E. Escobedo-Cardenas, G. Camara-Chavez, A robust gesture recognition using hand local data and skeleton trajectory, in: Proceedings of the IEEE International Conference on Image Processing [Google Scholar]
  13. A. Joshi, C. Monnier, M. Betke, S. Sclaroff, Comparing random forest approaches to segmenting and classifying gestures, Image Vis. Comput. 58 (2017) 86–95, DOI: 10.1016/j.imavis.2016.06.001. [Google Scholar]
  14. Ameur, Safa, et al. « A Novel Hybrid Bidirectional Unidirectional LSTM Network for Dynamic Hand Gesture Recognition with Leap Motion ». Entertainment Computing, vol. 35, août 2020, p. 100373. DOI.org (Crossref), DOI: 10.1016/j.entcom.2020.100373. [Google Scholar]
  15. Santos, Clebeson Canuto dos, et al. « Dynamic Gesture Recognition by Using CNNs and Star RGB: A Temporal Information Condensation ». Neurocomputing, vol. 400, août 2020, p. 238–254. DOI.org (Crossref), DOI: 10.1016/j.neucom.2020.03.038. [Google Scholar]
  16. Mahmoud, Rihem, et al. « Deep Signature-Based Isolated and Large Scale Continuous Gesture Recognition Approach ». Journal of King Saud University - Computer and Information Sciences, septembre 2020, p. S1319157820304559. DOI.org (Crossref), DOI: 10.1016/j.jksuci.2020.08.017. [Google Scholar]
  17. Almasre, Miada A., et Hana Al-Nuaim. « A Comparison of Arabic Sign Language Dynamic Gesture Recognition Models ». Heliyon, vol. 6, no 3, mars 2020, p. e03554. DOI.org (Crossref), DOI: 10.1016/j.heliyon.2020.e03554. [CrossRef] [PubMed] [Google Scholar]
  18. 2018. TensorFlow.js. https://js.tensorflow.org/. [Google Scholar]
  19. 2018. ConvNetJS. https://cs.stanford.edu/people/karpathy/convnetjs/. [Google Scholar]
  20. 2018. Kerasjs. https://github.com/transcranial/keras-js. [Google Scholar]
  21. 2018. WebDNN. https://github.com/mil-tokyo/webdnn. [Google Scholar]
  22. 2018. Mind. https://github.com/stevenmiller888/mind. [Google Scholar]
  23. JSHG. “Javascript Hand Gesture Plugin”, https://nhudinhtuan.github.io/jshg/ (current March 5, 2018) [Google Scholar]
  24. Korhan Akcura, NoTouchjs “A JavaScript Library for Touch-Free Web Browsing” [Google Scholar]
  25. Egemen Ertugrul, Ping Li, Bin Sheng: On attaining user-friendly hand gesture interfaces to control existing GUIs. Virtual Real. Intell. Hardw. 2(2): 153–161 (2020) [Google Scholar]
  26. Sharma, Ram Pratap, and Gyanendra K. Verma. “Human computer interaction using hand gesture.” Procedia Computer Science 54 (2015): 721–727 [Google Scholar]
  27. Lee, A., et al. « Enhancement of Surgical Hand Gesture Recognition Using a Capsule Network for a Contactless Interface in the Operating Room ». Computer Methods and Programs in Biomedicine, vol. 190, juillet 2020, p. 105385. DOI.org (Crossref), DOI: 10.1016/j.cmpb.2020.105385. [CrossRef] [PubMed] [Google Scholar]
  28. Mahmoud, Rihem, et al. « Deep Signature-Based Isolated and Large Scale Continuous Gesture Recognition Approach ». Journal of King Saud University - Computer and Information Sciences, septembre 2020, p. S1319157820304559. DOI.org (Crossref), DOI: 10.1016/jjksuci.2020.08.017. [Google Scholar]
  29. Meghana, M., et al. « Hand Gesture Recognition and Voice Controlled Robot ». Materials Today: Proceedings, vol. 33, 2020, p. 4121–4123. DOI.org (Crossref), DOI: 10.1016/j.matpr.2020.06.553. [Google Scholar]
  30. Huang, Yao, et Jianyu Yang. « A Multi-Scale Descriptor for Real Time RGB-D Hand Gesture Recognition ». Pattern Recognition Letters, vol. 144, avril 2021, p. 97–104. DOI.org (Crossref), DOI: 10.1016/j.patrec.2020.11.011. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.