Open Access
Issue |
E3S Web Conf.
Volume 297, 2021
The 4th International Conference of Computer Science and Renewable Energies (ICCSRE'2021)
|
|
---|---|---|
Article Number | 01031 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/e3sconf/202129701031 | |
Published online | 22 September 2021 |
- Bennett, J.M.: Smart ct scan based covid19 virus detector. https://github.com/JordanMicahBennett/SMART-CT-SCAN_BASED-COVID19_VIRUS_DETECTOR [Google Scholar]
- Cohen, J.P., Morrison, P., Dao, L.: Covid-19 image data collection. arXiv:2003.11597 (2020), https://github.com/ieee8023/covid-chestxray-dataset [Google Scholar]
- Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017) [Google Scholar]
- Mooney, P.: Kaggle chest x-ray images (pneumonia) dataset. https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia (2018) [Google Scholar]
- Nisar, Z.: https://github.com/zeeshannisar/covid-19.https://github.com/zeeshannisar/COVID-19 (2020) [Google Scholar]
- Petsiuk, V., Das, A., Saenko, K.: Rise: Randomized input sampling for the explanation of black-box models. In: Proceedings of the British Machine Vision Conference (BMVC) (2018) [Google Scholar]
- Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., Ding, D., Bagul, A., Langlotz, C., Shpanskaya, K., et al.: Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv:1711.05225 (2017) [Google Scholar]
- Ranjan, E., Paul, S., Kapoor, S., Kar, A., Sethuraman, R., Sheet, D. : Jointly learning convolutional representations to compress radiological images and classify thoracic diseases in the compressed domain (12 2018). https://doi.org/10.1145/3293353.3293408 [Google Scholar]
- Ruiz, P.: Understanding and visualizing densenets. https://towardsdatascience.com/understanding-and-visualizing-densenets-7f688092391a (2018) [Google Scholar]
- Wang, L., Wong, A.: Covid-net: A tailored deep convolutional neural network design for detection of covid-19 cases from chest radiography images (2020) [Google Scholar]
- Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: Chestx-ray8:Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 2097–2106 (2017) [Google Scholar]
- Weng, X., Zhuang, N., Tian, J., Liu, Y.: Chexnet for classification and localization of thoracic diseases. https://github.com/arnoweng/CheXNet/ (2017) [Google Scholar]
- Yao, L., Poblenz, E., Dagunts, D., Covington, B., Bernard, D., Lyman, K.: Learning to diagnose from scratch by exploiting dependencies among labels. arXiv:1710.10501 (2017) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.